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A B S T R A C T   

Machine learning, as a computational tool for finding mappings between the input and output data, has been 
widely used in engineering fields. Researchers have applied machine learning models to generate 2D drawings 
with pixels or 3D models with voxels, but the pixelization reduces the precision of the geometries. Therefore, in 
order to learn and generate 3D geometries as vectorized models with higher precision and faster computation 
speed, we develop a specific artificial neural network, learning and generating design features for the forms of 
buildings. A customized data structure with feature parameters is constructed, meeting the requirements of the 
neural network by rebuilding surfaces with controlling points and appending additional input neurons as 
quantified vectors to describe the properties of the design. The neural network is first trained with generated 
design data and then tested by adjusting the feature parameters. The prediction of the generated data shows the 
basic generative ability of the neural network. Furthermore, trained with design data collected from existing 
buildings, the neural network learns and infers the geometric design features of architectural design with 
different feature parameters, providing a data-driven method for designers to generate and analyze architectural 
forms.   

1. Introduction 

1.1. Background 

In the design process, designers create their works using models or 
drawings based on their design requirements and limits [1]. Especially 
in the design of forms, such as the generative design for pavilions or 
high-rise buildings, its process is similar to the programming of algo
rithms; it inputs several controlling factors and outputs the generated 
geometric models or drawings [2,3]. 

There are two algorithmic methods to generate design solutions. One 
is rule-based, including the Metropolis algorithm [4], simulated 
annealing [5], and the genetic algorithm [6]. These algorithms regard 
the design process as an optimization problem, applying human-defined 
rules to iteratively approach the solution that meets the requirements. 

In architectural design, researchers have been using these algorithms 
to refine their design work for decades. Simulated annealing has been 
applied to solve the facility layout problem in the interior design of a 
hospital [7] and generate the optimal floor plans [8], and to evaluate 
and optimize a lightweight structure with high performance and low 

cost [9]. Additionally, the genetic algorithm has been used to design 
massing options on the basis of a site as a pixel image [10] and to look 
for design solutions that optimize thermal and lighting performance in a 
building [11]. 

However, in order to “teach” the algorithms to find the solutions, 
users must clearly define the objective function f(x) [12]. That means 
that, in the design field, designers must provide a clear evaluation 
function to state the quality of a design instead of giving just a binary 
judgment. It is difficult for designers to understand and express the exact 
objective function in a mathematical way. 

Another method to generate design solutions is the data-driven 
process that involves artificial intelligence approaches. Artificial intel
ligence methods have been widely used in design [13] and non-design 
domains, especially the applications of machine learning techniques 
such as the neural networks. Machine learning as a decision-making tool 
differs from simulated annealing and the genetic algorithm in that it 
takes the input controlling factors and the output solutions as training 
data and then calculates the mappings between the inputs and outputs. 
To be specific, the process is presented as several neurons and a neural 
network describing the computational relations between the inputs and 
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outputs [14]. When the input feature data and the output design data are 
given to the neural network, the program runs the training process with 
back propagation [15] to optimize the parameters in the neural network. 
Then, with the finalized network, the user can input a new set of feature 
data and obtain the output design data as feedback. 

Using this method, the user needs to provide the neural network with 
only the design features and their corresponding design results, instead 
of the objective functions, to train a "data translator", helping transform 
the input data into the output design works (Fig. 1). Researchers have 
applied machine learning in solving architectural, urban, and environ
mental problems in previous research [16–20]. Successful applications 
of machine learning techniques in solving design problems include the 
following: learning design concepts from design examples [21], learning 
design shapes from point clouds [22], converting unstructured triangle 
meshes into ones with consistent topology [23], classifying design ob
jects [24], and describing and categorizing the design process quanti
tatively [25]. 

1.2. Problem statement 

In architectural design, researchers have recently applied different 

neural networks to learn and generate design works. Translating visual 
design data into 2D images is a convenient method to feed the design 
data into neural networks. Generative adversarial networks (GANs) [26] 
are used to generate design images. Previously, GANs have been used to 
generate satellite images of cities [27,28]; architectural floor plans and 
layouts [29,30]; street view images [31,32]; three view images of resi
dential houses [33]; the geometry of curved surfaces as black-and-white 
images [34]; structural solutions with evaluation criteria [35]; and the 
assembly plans for bricks [36]. 

In addition to the 2D pixel-based tasks, 3D convolutional neural 
networks (3DCNNs) [37] and 3D generative adversarial networks 
(3DGANs) [38] represent another approach to learn and infer archi
tectural data in a 3D voxel-based format. The uses of these techniques 
include classifying the 3D features of buildings [39], identifying diffi
cult-to-manufacture features in 3D models [40], and generating mod
elings for industry and furniture [38]. 

However, training GANs requires large computational power, which 
cannot be easily applied to the problem-solving in design-related scenes 
[41,42]. According to the visualization of the parameters and kernels in 
the neural network [29], the convolution layers in image-based neural 
networks actually act to detect the boundary information from the 
original image and then combine features into deeper layers for 
computation. Thus, a neural network based on pixels or voxels first 
translates image data into vector-like data by creating continuous white 
or black pixels, then feeds the pixel data to full-connected layers for 
outputting a single value (image classifier) or to deconvolution layers for 
outputting another image (image generator). A large amount of 
computational power is used to update millions of kernels, which only 
acts to transform images into vectorized data. Thus, it is inefficient to 
train image-based neural networks if vectorized data already exists in 
CAD drawings or modelings in most of the architectural design cases. 

Furthermore, because of the voxelization, precision is lost during the 
translation between the vector data and voxel data [43]. For the 
commonly used 3DGAN [38] model, the output layer only generates a 
64*64*64 voxel model, which gives an aliased solution and is not 
smooth enough to represent an architectural form, especially the curved 
facade of a building under the design tendency of free-from surface. 

In addition to the voxel-based method, there are some existing ma
chine learning techniques based on vectorized data, for example point 
cloud [44,45] and graph topology [46,47]. However, the point cloud 
method also requires a large number of computation resources because 
the density of the point cloud directly influences the precision of the 
model. Additionally, the graph-based data structure is usually used 
when generating the topological relation of elements, so it is not suitable 
for generating design models with geometric information. 

1.3. Objectives 

Therefore, in order to train a neural network to learn and generate 
3D architectural geometries as vectorized models rather than pixelized 
images or voxelized volumes, we introduce an artificial neural network 
with a data structure customized for generating 3D forms, which enables 
designers to generate architectural geometries with data-driven ma
chine learning methods by training with design examples. In this 
research, our goal is to test whether this artificial neural network can 
learn and generate design cases as geometries with features from 
different designers and also whether it can become a tool architects can 
use to quickly generate architectural forms with a design style that is 
similar to the collected dataset. As a result, this method is intended to be 
used as a form-finding tool in the early design stage, helping architects 
improve their creativity and efficiency. 

As compared with other methods on a technical level, first, the data 
structure should keep the precision of the original data while the 
training and generating processes should be accelerated. To achieve this, 
a new data structure should be developed, storing the modeling data as a 
collection of numerical vectors rather than as pixelized images. The 

Fig. 1. Simulated annealing, genetic algorithm, and machine learning (artifi
cial neural networks). 
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vectorization and the digital representation of the design data in this 
method will provide guidance and inspiration for further exploration of 
intelligent algorithms in architectural design. Also, this artificial neural 
network should be easy to train and implement, which does not require 
extensive computational power. Due to the lack of computational power 
in personal computers available to most architects, this method should 
provide a light-weight neural network structure and training process to 
allow fast training and generating in local computers. 

Second, in order to provide more options for the generation of 
architectural forms - for example, the footprints and styles - this artificial 
neural network should include the input features to represent the 
different requirements and constraints in the design process. By defining 
the values in the input layer, designers should be able to generate the 
corresponding output geometry under the control of design features. 
Meanwhile, the modification of the features should be flexible, thus 
broadening the potential uses of this method by providing a general 
guideline for adjusting features quantitatively. 

Third, by building a generative system for the case studies, this 
research also aims to show a general workflow for applying machine 
learning methods to predict design solutions. According to the input 
features and the output results, it should be possible to adapt this system 
to different generative tasks, thus helping designers to play with forms 
with data-driven methods. 

Last, in order to verify the capability of the neural network, two 
datasets, the generated and the real, are proposed to be collected and 
tested using this neural network. The successful training and predicting 
of both datasets can then prove the above assumption. 

2. Methodology 

2.1. Data processing 

In the process of generating 3D forms, usually a surface, the geo
metric data is recorded as a series of Non-Uniform Rational Basis Splines 
(NURBS) defining the sections in the surface in modeling software, for 
example Rhino [48]. A series of 3D points defines NURBS as controlling 
points (Fig. 2). Therefore, a surface is originally defined by a grid of 
points with coordinates of (x, y, z), while the points together define the 
UV NURBS and further become the surface. 

For example, as Fig. 3 shows, when the surface of a tower design is 
deconstructed by an 8layer*10item grid of points, it can be presented as 
the collection of the coordinates of the controlling points from (x00, y00,
z00) to (x79, y79, z79). Taking the process a step further, since the dis
tance between each neighboring layer remains constant and all layers 
are parallel to the world XY plan, the coordinates can be simplified as a 
2D vector of (x, y) and a 1D vector (H) as the height of the surface in Z 

direction. That means that the surface can be expressed as a collection of 
161 real numbers listed as (x00, y00, x01, y01,…, x79, y79,H), which is 
acceptable for a more efficient artificial neural network. 

Next, it is important to note that the sigmoid activation functions in 
the neural networks are usually specially designed to learn and generate 
data between 0 and 1, such as solving the binary problem [49]. In order 
to obtain a better prediction of the form, all real numbers should be 
standardized into a range of 0–1. 

Fig. 4 shows the process of data standardization. The original model 
is scaled down by scaling factors for X, Y, and Z axes, and fitted into a 
box with side lengths of 1 unit in the X direction, 1 unit in the Y di
rection, and 10 units in the Z direction. Equation (1) shows the defini
tion of the scaling factors RX, RY , and RZ, in which k is a fixed coefficient, 
while X Ratio, Y Ratio, and Z Ratio are parameters with values of real 
numbers between 0 and 1. After the surface has been scaled down, its 
bonding box in the X, Y, and Z directions coincides with that specific 
box. Since all points are inside the bounding box, their coordinates (x, y)
are also real numbers between 0 and 1. 

RX =
1

k*XRatio

RY =
1

k*YRatio

RZ =
1

k*ZRatio

(1) 

However, when training with the data from different cases, points 
with the same index contributes to the training of the same neuron, 
which means they share the same weight parameter from which to learn 
and generate [50]. Thus, in order to align points in each case as much as 
possible, the points in each UV NURBS are rebuilt as Fig. 5 shows. After 
scaling up, the closest point on the UV NURBS to the coordinates origin 
(0, 0) is found and assigned as the new start point (Point 0). Then the 
original UV NURBS is divided into 10 points again based on the new start 
point. As a result, all points with the same index in different cases have 
greater commonality and train the same neurons. 

Lastly, feature parameters, as additional input neurons, describe 
design data with different design strategies or styles. With these Fig. 2. Definition of the surface.  

Fig. 3. Parameterization of a surface in the world coordinate system.  
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neurons, the neural network is able to learn and generate design data 
based on the given parameters, mathematically describing the related 
factors that influence the design outcomes [51]. 

To show an example of adding these feature parameters into the 

neural network structure and test the learning ability of the neural 
network, we define 9 different operations to generate the training 
dataset of tower-like forms (Fig. 6). For each style, a set of 9 numbers, 
either 0 or 1, is assigned as its feature parameter, showing the index of 
its style. For example, (0,1, 0, 0,0, 0,0, 0,0) represents the 2nd style; 
(0, 0,0, 0,0, 0,0, 0, 1) denotes the 9th style. There is always one style 
assigned to each case in the training data, which means that there is only 
one count of number 1 in the 9 numbers. However, forms with combined 
styles can be generated by inputting feature parameters, such as (0, 0.5,
0, 0,1, 0.8, 0,0, 0.3), in the generative design process. We discuss this 
over the following pages. 

Therefore, with 9 sets of feature parameters in total, 9 styles of the 
tower forms are generated as the training data. As Fig. 6 shows, the 
forms contain two types of geometric operations and three options for 
each operation. The first operation defines the basic shape of the form: 
straight, gradual, or conical. Based on the overall shape, the second 
operation applies distortions in different positions in the form: no 
distortion, distortion in the lower position (z = 2.5), or distortion in the 
middle and upper positions (z = 5 and z = 7.5). The two operations 
together produce 9 types of distinguishable forms, in which the 
complicated shapes increase the difficulty or learning for the neural 
network. We anticipate being able to see the effects on the performance 
of the neural network and evaluate its abilities by analyzing the results. 

Once 100 forms are randomly generated for each style, the training 
dataset contains 900 forms. For every single form, it is translated as 172 
real numbers between 0 and 1, listed as x00,y00,x01,y01,…,x79,y79, X 
Ratio, Y Ratio, Z Ratio, and 9 feature parameters. 

2.2. Neural network training 

The purpose of generative design is to generate a form based on 
several given requirements [52], such as the footprint of the building 
and the style of the form. To make a generative design machine for the 
tower design, the input data should include basic information to allow 
the neural network as well as a human designer to generate a unique 
form. 

Fig. 7 shows the definition of the input and output data. The data of 
the controlling points in Layer 0 describes the geometry, which touches 
the ground as the starting section of the form. X Ratio (XR), Y Ratio (YR), 
and Z Ratio (ZR) represent the actual size of the form by showing the 
scaling ratios. And the 9 feature parameters, FP1 to FP9, provide the 
information on the styles, identifying the design strategies of the form. 
The output data contains the rest of the controlling points from Layer 1 
to Layer 7. By building the surface according to the 1 inputted and the 7 
outputted UV NURBS and then scaling the surface up by the three ratios, 
the form is constructed, providing the users with a 3D form for the tower 
design. 

Fig. 8 shows the neural network structure. In addition to the input 
and output layers, each hidden layer between them acts as an operator to 
combine the parameters from the previous layer and forward the pa
rameters to the next layer. Having more and larger hidden layers yields 
more accurate predictions, but they also require more time for training 
and predicting and increase the risk of overfitting [53]. After experi
ments, we found that the neural network with only one hidden layer of 
200 neurons performed best on balance, considering both accuracy and 
efficiency [54]. Therefore, a neural network with a hidden layer of 200 
neurons was chosen as the basic machine learning framework. 

As mentioned before, the purpose of standardizing all the real 
numbers into the range of 0–1 is to allow the application of a sigmoid 
activation function to the neural network. Thus, the activation function, 
which calculates the parameter ŷ in the current neuron from the 
parameter x in the previous neuron, can be expressed as the sigmoid 
formula (Eq. (2)). 

ŷ = Sigmoid(w * x+ b) =
1

1 + e− (w*x+b) (2) 

Fig. 4. Model scaling and data reparameterizing.  

Fig. 5. Adjusting controlling points.  
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For the output layer, in order to return the feedback on how much 
deviation there is between the predicted output ŷ and the ground truth 
output y, a mean squared error (MSE) function is chosen as the loss 
function to evaluate the neural network performance and allows the 
back propagation to update the neural network weight w and bias b 
parameters (Eq. (3)). 

Loss(y, ŷ)=
1
n
∑n

i=1
(yi − ŷi)

2 (3) 

Therefore, with the neural network described above, the training 

dataset of 900 forms was assigned to train and update the neural 
network parameters. It took an i7-6700HQ CPU-only laptop 0.8 h to run 
roughly 30,000 epochs, and ultimately, it reached an error value of 0.04 
for each case (Fig. 9), which means that, on average, there is a shift of 
just 0.024 units for each point. 

After training, to test the performance of the neural network, the 
testing dataset was generated and inputted to the neural network. In the 
training process, the neural network only updates itself by learning the 
training dataset without loading the testing dataset. Thus, through a 
comparison of the expected forms and the predicted forms of the testing 
dataset, the performance of the neural network can be evaluated. 

Fig. 10 shows the forms generated from the input data with the same 
controlling points in Layer 1 and different feature parameters. In the 
cases of 1), 4), and 7), when no distortion applies to the forms, the loss 
value is insignificant; the predicted forms and the expected forms are 
analogous. However, when distortions exist, as in 2), 3), 5), 6), 8), and 
9), the loss value is larger. Especially in the cases of 3), 6), and 9), in 
which distortions happen in two positions, the loss value is 3–10 times 
larger than that in the training dataset, and there are obvious differences 
between the two corresponding forms in geometric renderings, although 
the overall tendency looks synchronous. However, for the basic straight, 
gradual, or conical shape, the performance also varies. In the cases of 1), 
2), and 3), when the basic form is straight, the loss value is smaller than 
that in the cases of 4) to 9). This is because, mathematically, the straight 
form means there are no significant changes between the higher layers 
and the first layer. As a result, after the distortions are applied, the 
changes are smaller, and the design features are simpler for the neural 
network to learn. 

Generally speaking, the overall loss is in anticipation, and the pre
dicted forms are very similar to the ground truth forms. The neural 
network was successfully built and trained, and it learned and practiced 
the different design features in the generated dataset. 

2.3. Result evaluation 

Using the trained neural network as a transforming tool, one can 
explore the generative design process, generating forms by inputting 
different feature parameters, such as combining two feature parameters 
to represent the mixture of the two styles. 

First, to test the influence of the feature parameters on the forms, a 
series of forms are generated by inputting a single feature parameter 
with different scales, such as (0.4,0,0, 0,0, 0,0, 0,0) or 

Fig. 6. Feature parameters and data generation.  

Fig. 7. Input and output data.  
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(0, 0,0, 0,0, 0,0, 0, 0.8), as Fig. 11 shows. 
In the case of 1-1), when all feature parameters are 0, an initial form 

is generated, showing a basic form. It is more complicated than a simple 
form because it allows one of the 9 geometric operations to deform it and 
neutralize the curved parts while maintaining the ability to accept the 
other 8 operations equally with different feature parameters. Then in the 
cases from 1-2) to 1-6), 5 forms with the first feature parameter grad
ually changed from 0.2 to 1 are generated. The curved parts are grad
ually neutralized and disappear, and finally, the form becomes straight, 
as expected. Additionally, in the cases from 2-2) to 2-6), in which conical 
forms with distortions from the middle up are generated, the same 
phenomenon can be observed for this geometric operation. As the 
feature parameter increases, the curvature of the form gradually 
changes, resulting in smooth parts. 

Therefore, inputting a single feature parameter in different scales 
with real numbers from 0 to 1 allows the form to be generated based on 
different degrees of the corresponding operation. Designers can adjust 
the scale of the design strategies by inputting different numbers and 
generating a series of forms. The generation of the desired forms dem
onstrates that the neural network is suitable in data-driven generative 
tasks. 

Next, we test form generation with two feature parameters at the 
same time. Fig. 12 shows the selected output forms with two feature 
parameters, where the feature parameters are both 1. However, the re
sults are not as convincing as expected. This is exemplified by 4), whose 
form is difficult to understand by looking into the feature parameters 
and their corresponding operations. Moreover, in the cases of 2), 3), and 
5), in the middle of the forms, it is difficult to explain why the UV NURBS 
curves in the front and back run in different directions. Only the form in 
the case of 1) looks reasonable, being gradual (straight + conical) with 
middle-and-up distortion (no distortion + middle-and-up distortion). 

Further, a special form that inputs all feature parameters as 
(1, 1,1, 1,1, 1,1, 1, 1) is generated. But the neural network outputs all 
numbers as 0, which means the generation process fails, without any 
results. Therefore, we can assume based on the above observation that, 
when a feature parameter is inputted, the corresponding operation acts 
on the form. But in the training dataset, all operations squeeze and 
shrink the form to some degree. Thus, if too many operations act on the 
form too much, that is, the sum of all 9 feature parameters exceeds a 
certain number, the form cannot exist with legal operations. 

Accordingly, in the next test, whose results are shown in Fig. 13, the 
sum of the two inputted feature parameters is always 1. The results show 
a clear path of change in the forms from the case of 1) to the case of 6). 

Fig. 8. Neural network structure.  

Fig. 9. Training epoch and loss.  
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Unlike in the previous forms, feature parameters with different pro
portions lead to the generation of a series of forms, showing the inter
mediate forms between two styles. 

Therefore, inputting two feature parameters in different proportions 
with a sum of 1 generates a form in a combined style, presenting both 
features. Designers can adjust the proportion of the two design strategies 
by inputting different numbers, and they can generate a series of forms, 
even if the same feature parameters are not included in the training 
dataset. It also shows the ability of the neural network to infer nonex
istent design strategies by learning from the existing data. 

2.4. Methods comparison 

With the initial experiment above, we fine-tuned the hyper
parameters for the training process while comparing the performance of 
each combination of hyperparameters, in order to find the neural 
network settings with highest accuracy. 

First, we compared the efficiency of ANN and GAN. As we state in the 
objectives, the training cost of our vector-based ANN model should be 
lower than pixel-based GAN models. Table 1 shows the comparison of 
the two models. The initial hyperparameters for our ANN model con
tains: 2 layers (1 hidden layer); 200 neurons in the hidden layer; and 
Adam optimizer with the learning rate of 0.001. We applied pix2pixHD 
[55] as the GAN model for comparison. Using an i7-6700HQ CPU, the 
training of our ANN model cost 0.8 h for 30000 epoch. To train the GAN 
model, we transformed the curvatures into 8 groups of black-and-white 

images, thus it required the training of 7 models for generating the 
surface information. With the acceleration of a Tesla-P100 GPU, the 
training still cost around 60 h in total. This comparison supports our 
assumption that our ANN model is light-weighted and fast for training. 

Second, besides ANN, there are other vector-based machine learning 
models being used in solving design-related problems. Therefore, we 
compared the accuracy of different vector-based machine learning 
models with our ANN model. Table 2 shows the 5-fold cross-validation 
accuracy of each model. Compared with other models such as the 
Random Forest Regressor and the Linear Regressor, our ANN model 
presents a highest accuracy of 98.05%. 

Furthermore, we adjusted the number of layers to compare the ac
curacy of each ANN model derived from our initial model (Table 3). It 
shows a highest accuracy of the initial model with 2 layers (1 hidden 
layer). Thus, the 2-layer ANN model performs best in our generative 
task. 

Third, the hyperparameters during the training process also influ
ence the accuracy. Table 4 shows the comparison of the training results 
with different optimizers. According to the 5-fold cross-validation, we 
selected Adam optimizer since it showed a highest accuracy with a fixed 
number of training epoch. 

With Adam optimizer, we further changed the learning rate and 
compared the performance of each model (Table 5). When the learning 
rate was set to 0.001, it resulted in a highest accuracy. Therefore, we set 
our ANN model with 2 layers and Adam optimizer with the learning rate 
of 0.001. 

Fig. 10. Expected forms and predicted forms from test dataset.  
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3. Implementations 

Based on the generated results above, it has been shown that the 
artificial neural network has the ability to learn the features of the 3D 
forms in the training process. As a new method for finding forms, various 
geometries can be created by inputting certain site conditions, while 
combining with adjustable design strategies. Moreover, in order to add 
more practical application meanings to the neural network, it is neces
sary to use real-world data to test and develop the feasibility of the 
neural network. To that end, in addition to the training of the generated 
data, data on existing buildings in the real world were collected as the 
training data. 

However, when the influencing factors on the forms of the existing 
buildings are considered, there are several choices for defining the 
feature parameters, such as the completion year, architectural firm, 
location, material, or function. But since the amount of data is limited, 
and an excess of feature parameters causes the neural network to fail and 
output confusing results [56] only one type of feature parameter is set to 
be included in each training. In addition, in order to improve the neural 
network’s future prediction ability on a wider scale, the completion year 
and the architecture firm for individual styles are defined as the feature 
parameter in two separate training sessions below, representing the 
general building context. Both of the generating processes can be 

Fig. 11. Generating with gradually changed feature parameters.  

Fig. 12. Generating forms with two binary feature parameters.  
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summarized as three main steps: 1) data processing, 2) neural network 
training, and 3) design generation. 

3.1. Training with completion years 

In this training session, the feature parameter is defined as the 
completion years of the existing buildings. A sample of 90 high-rises 
completed from 1990 to 2030 worldwide was gathered and used as 
the training dataset for predicting the general development trends of 
global tower designs. 

First, at the data preparation stage, it is necessary to edit the models 
to match the neural network’s data structure. As Fig. 14 shows, the 
original model collected from the internet is usually too complicated, 
with a lot of details that have little influence on the overall form. 
Therefore, a simplified model needs to be built by extracting the main 
section curves and lofting them together. In detail, the model simplifi
cation process starts with closing all geometries in the original model, 
resulting in a new model that only contains closed meshes. Then, eight 
boundary sections are generated by contouring the new model from 
bottom to top as curves. Last, the section curves are lofted together as the 
final simplified model. 

After obtaining the proper models, the completion years of the 
buildings are converted into machine-learnable data by specifying a real 
number series from 0 to 1 as the year from 1990 (or earlier) to 2030 (or 
later) for standardization. As there are only 5 towers in the dataset built 
before 1990, it is more efficient to set them all as the minimum year of 
1990 to avoid the waste of parameter range. In addition, the maximum 
year is set as 2030 to make the neural network predict the form of towers 
in the future by inputting a feature parameter larger than the values in 
the training dataset. Therefore, the input data contains 24 neurons: 20 

Fig. 13. Generating forms with two real feature parameters.  

Table 1 
Comparison of the training cost in ANN and GAN.   

Resolution Device Training Epoch Training Time 

ANN numeric i7-67000HQ 
(CPU) 

30000 0.8 h 

GAN 512*512 (pixel) Tesla-P100 (GPU) 100*7 8.5*7 h  

Table 2 
Comparison of the accuracy of different machine learning methods.   

5-Fold Cross-validation Accuracy (%) 

ANN 98.05 
Decision Tree Regressor 95.57 
Bagging Regressor 96.62 
Random Forest Regressor 96.58 
Extra Trees Regressor 96.96 
Linear Regressor 97.85  

Table 3 
Comparison of the accuracy of ANNs with different numbers of layers.   

5-Fold Cross-validation Accuracy (%) 

1-layer ANN 97.45 
2-layer ANN 98.05 
3-layer ANN 97.39 
4-layer ANN 95.43  

Table 4 
Comparison of the accuracy of ANNs with different optimizers in training.   

5-Fold Cross-validation Accuracy (%) 

Adadelta 74.97 
Adagrad 88.26 
Adam 98.05 
Ftrl 95.86 
Gradient Descent 88.05 
RMSProp 97.34  

Table 5 
Comparison of the accuracy of ANNs with different learning rate for 
Adam optimizer in training.   

5-Fold Cross-validation Accuracy (%) 

0.0001 96.98 
0.001 98.05 
0.01 81.15 
0.1 56.14  
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real numbers for the controlling points in the first layer, 3 real numbers 
for the scaling ratios, and 1 real number for the completion year. 

Nevertheless, another problem is the lack of training data. Compared 
with the 900 generated training forms, 90 collected forms might not be 
enough to train the same neural network. But since a form has no 
orientation, rotated forms with the same model are also acceptable as 
separate data. This fact allows for 270 more forms to be created by 
rotating the original forms by 90, 180, and 270◦. Then, the controlling 
point data extracted from the 360 total buildings are prepared for the 
training process. After training, the loss value reached the same level 
compared to the previously generated neural network, indicating the 
new neural network should have the same ability to generate forms with 
different feature parameter values. 

With the trained neural network, the generative design process can 
be achieved using a similar method for the previous neural network. The 
difference is that, besides the 20 parameters for the first layer repre
senting the footprint, the feature parameter contains only the comple
tion year in the new neural network; however, the parameter can be any 
continuous real number between 0 and 1. Therefore, a set of gradually 
changed feature parameter values can be assigned to the inputted 
footprint to generate a series of forms, representing the predicted tower 
designs in different completion years with the same footprint. 

To be specific, in Fig. 15, the case of 2005) is the original simplified 
model, Q1 Tower in Queensland completed in 2005. With the same 
footprint but different feature parameters, 41 predicted forms from 
1990) to 2030) are listed. The gradual changes in forms are clear from 
left to right, showing the different simplified design strategies in 

different years. Although the design should not be similar from year to 
year, the results show gradual rather than sudden change because the 
training data is still not sufficient to cover all conditions. As a result, the 
neural network outputs a mathematically average form between two 
existing cases, causing the inadequate prediction. However, the 
remarkable trait of this generative design method is the ability to pro
duce new and variable forms according to the limited training data, 
giving designers more choices to select from. Especially when upcoming 
years are used as feature parameters, the predicted forms represent a 
possible design trend of the future, showing the ability of the neural 
network to learn and deduce design rules. 

However, the design trend sometimes varies according to different 
boundary conditions. For example, Figs. 16 and 17 show the forms 
predicted from the footprints of two buildings, Q1 Tower and The Torch. 
The change tendencies of the forms display different results. In the case 
of Q1 Tower, Form 1990) is more distorted than Form 2030), while in 
the case of The Torch, Form 2030) is more distorted than Form 1990). 
This phenomenon indicates that footprint also performs a major role in 
predicting, even if it varies a little in the two cases. 

3.2. Training with design styles 

In this experiment (also presented at the DigitalFUTURES Shanghai 
2019 Workshop Group 7-2), the feature parameter is redefined as the 
design styles of different architects. To build the training dataset, 184 
models of completed buildings are collected, representing 7 groups of 
designers (Le Corbusier, MAD, Gensler, Zaha Hadid Architects, Tadao 
Ando, BIG, and SOM). However, the objectives are expanded to common 
architectural works, thus the combined proportions of different archi
tects can generate forms with mixed design styles (Fig. 18). 

Next, the models gathered online should be simplified and then 
unified into closed surface. In contrast to the tower collections, the 
architectural works in general increase the complexity in forms and 

Fig. 14. Model simplification.  

Fig. 15. Predicted forms with the same footprint but different feature parameters (completion year).  

Fig. 16. Predicted forms with the footprint of Q1 Tower.  
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design methods while decreasing the values of building levels. Specif
ically, when extracting the 2D vectors form 3D models, the previously 
stated rule of an 8layer*10item grid of points may not be enough to 
summarize the complicated forms. Thus, the controlling points extracted 
from each building are increased to 10 layers with 20 points per layer, 
indicating that the 3D mesh can be translated into a collection of 400 
real numbers, which develops more inclined mapping between the 

original forms and the training data (Fig. 19). 
In addition, since the difference of the heights of the collected 

buildings is smaller than that of the towers in the generated case, the 
height set in the bounding box for the data reparameterization (10 units 
in the Z direction) is not suitable for scaling the values of this model 
collection. As a result, the unit value in the Z direction is decreased to 2, 
in order to obtain a more even numeric distribution of Z Ratio. Thus, 
after the controlling points are aligned and rebuilt, the training data 
structure is then changed into x0,y0,…,x199,y199, X Ratio, Y Ratio, Z 
Ratio, and 7 feature parameters - that is, a series of 410 real numbers for 
each building. 

As a result, the input data contains 50 neurons - 40 real numbers for 
the controlling points in Layer 0, 3 real numbers for the scaling ratios, 
and 7 feature parameters indicating 7 architecture companies. The 
number of neurons in the hidden layer is also enlarged to 500 due to the 
increased complexity of the data structure. The final outputs involve 360 
neurons from Layer 1 to Layer 9 with 180 controlling points in total 
(Fig. 20). Furthermore, due to the complicated forms of the distin
guished styles, the rotation method is also used for strengthening the 
training data; 1288 more forms are created by rotating the original 
models by 45, 90, 135, 180, 225, 270 and 315◦. Finally, 1472 stylized 
forms in total are prepared for the next stage of the neural network 
training. 

Before training, we implemented a k-means clustering method [57] 
with a K value of 7 to test whether the seven groups of forms are similar 
or can be easily distinguished by seven clusters. Specifically, we 
implemented the script in Python with Numpy for numeric processing. 
For the data structure, we maintained the 410-dimensional vector for 

Fig. 17. Predicted forms with the footprint of The Torch.  

Fig. 18. Workflow of the training and generative design with different architects’ design styles.  

Fig. 19. Controlling points extraction process with 10 layers and 20 points for each layer.  
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each form while standardizing the values (Eq. (4)). After clustering, 
Fig. 21 shows the distribution of the members in each cluster. According 
to the distribution, we used purity measure [58] to evaluate the accu
racy. The result shows an overall accuracy of 26.06%, which is higher 
than the random-guess accuracy of 17 (14.29%). 

xstandardized =
x − mean(x)

standarddeviation(x)
(4) 

Additionally, according to Fig. 21, each group of forms is gathered 
into different clusters, with a tendency to be certain styles. For example, 
in the group of Gensler, MAD, BIG, and SOM, a large amount of forms are 
grouped into clusters 2 and 6. However, most forms in the group of Zaha 
are collected into clusters 1 and 2, whereas most forms in the group of Le 
Corbusier and Tadao are gathered into clusters 1, 2, and 6. We might 
understand this phenomenon as the classification of design styles, in 
which cluster 2 represents the general architectural design style for all 
groups and cluster 6 represents the commercial design style for com
panies such as Gensler and SOM, whereas cluster 1 represents the 
emerging design style with more complex forms and more for individual 
architects, for example Zaha, Le Corbusier, and Tadao. Therefore, the 
features of each group might be represented in a higher dimension that 
combines different design styles. 

Generally speaking, however, from the k-means clustering experi
ment above, we can reach a primary conclusion that the features in the 
dataset can be learned with machine learning techniques. Although the 
clustering does not indicate a high accuracy to distinguish the features, it 
is still available to use networks to further learn the features. 

After training, the loss value reached a relatively stable level 
compared with the neural network trained by the generated data, thus 
showing the ability of the neural network model to generate forms with 

various mixtures of design styles. According to the 7 styles and their 
corresponding parameters in the features, different combinations of the 
influencing parameters are tested in the next stage. 

In the generative design process, Fig. 22 shows a path of predicted 
results in the cases from 1) to 7) with the same footprint and height 
conditions and with two gradually changed proportions of the Le Cor
busier style and the MAD style with a feature parameter sum of 1. The 
form designed by Le Corbusier is usually centroid and linear [59], 
whereas MAD usually prefers a non-linear form with complex surfaces 
[60]. 

As our result shows, a higher proportion of the Le Corbusier style led 
to simpler and more regular generated forms. However, increasing the 
proportion of MAD caused the geometries to become more distorted and 
finally result in a curved form. These traits visually reflect the differ
ences in the design styles of these two architects. By training with self- 
collected datasets, designers can apply this method to combine two or 
more design styles into one, to create inspirational forms for design 
exploration. 

Similarly, with the same footprint and height, more stylized com
bined forms are generated and compared during this process. Fig. 23 
also presents the changeable feature parameters between Gensler and 
Tadao Ando and between BIG and Zaha Hadid Architects, leading a 
series of hybrid forms with intermediary mappings of contrastive styles. 
Generally speaking, the generated results point out a tendency in Tadao 
Ando’s style to use more regular geometries, whereas others present a 
preference for uncommon curvatures. This observation matches the 
design styles by those architects [61–64]. A more detailed 
cross-comparison can be achieved similarly by testing other combina
tions of the feature parameters, thus providing designers with an 
analytical tool for design styles. 

To further verify the above conclusions, we designed a questionnaire 

Fig. 20. Neural network structure with FC layers.  

Fig. 21. Distribution of the clusters for each group of forms.  
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with three binary evaluations for the generated forms in Figs. 22 and 23, 
and we asked trained architects to distinguish the design styles. Each 
question asks a participant to match the forms with the architects 
(Fig. 24). The participant were required to have a bachelor’s or master’s 
degree in architecture or a related field, and they were required to have 
no prior knowledge of this research. A total of 40 architects participated 
in this questionnaire. 

According to the results, 100% of the participants successfully 
distinguished the Le Corbusier form from the MAD form and 90% of the 
participants distinguished the Gensler form from the Tadao form, but 
only 55% of the participants successfully distinguished the BIG form 
from the Zaha form. When questioned about the reason, most of the 
participants mentioned that they rely on the complexity of the forms to 
identify the styles. For example, the right form in the first question is 
more complex than the left form, thus it is regarded as the MAD form 
instead of the Le Corbusier form. The second question is similar in that 
the more complex form is marked as the Gensler form rather than the 
Tadao form. However, in the third question, the two forms are similar; 
even though the Zaha form is usually more complex than the BIG form, 
the participants could not distinguish these two similar forms. This 
result reveals that the design styles of BIG and Zaha have some common 
points from the perspective of data science and machine learning. 

Moreover, when considering the geometry parameters, the 

generated results are not always the same for different heights with fixed 
feature parameters. In Fig. 25, the increase of height decreases the 
surface complexity and the degree of distortion of the output geometries. 
This phenomenon indicates that the height setting also has an influence 
on predicting the forms. 

Lastly, for further testing the applicability of the neural network on 
an urban scale larger than a singular architectural unit, experiments are 
performed on different city patterns. Based on the generating effects of 
the two real-world training neural networks, 3 urban functional blocks 
and an ideal city panorama are both created for inspiring the city de
signers at an early stage (Fig. 26 and Fig. 27). 

In summary, in the training of real-world data, this paper has shown 
the feasibility of applying neural networks in 3D generative design. 
Different settings and inputs of feature parameters can be used to train 
variable neural networks and generate forms according to the re
quirements of designers. Table 6 shows the computation cost of the three 
cases discussed in this paper, which supports that our ANN model is 
light-weighted and requires small computation cost. 

4. Conclusion and discussion 

The artificial neural network is a novel tool for 3D generative design, 
especially when only the input and output design data is given, rather 

Fig. 22. Predicted forms with changing feature parameters of Le Corbusier and MAD on the same footprint.  

Fig. 23. Predicted forms with different changing feature parameters for other architects on the same footprint.  

Fig. 24. The questionnaire contained three questions asking the participants to select the architects for the forms.  
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Fig. 25. Predicted forms with gradually changed height and a fixed feature parameter.  

Fig. 26. Generation of functional urban blocks.  

Fig. 27. Predicted panorama of a city.  
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than the clear design strategies. Customized data and neural network 
structures help to translate the design forms into computational data and 
map design features to several controllable parameters. By inputting 
different feature parameters, either a single parameter with different 
scales or combined parameters with different proportions, this genera
tive design machine can generate 3D forms according to the features 
given by designers. 

When the neural network is trained with the data collected from 
existing architecture, it can be used to learn and infer design data with 
different features, helping architectural researchers digitally redefine 
design strategies hidden among massive and variable design data. Then, 
designers can easily apply the trained neural network to the generation 
of forms and quickly generate designs with different features. 

However, training a highly accurate neural network to generate 
design solutions requires a large amount of data, which shows the lim
itation of this data-driven generative design method, especially given 
the lack of architectural datasets [30]. Compared with other machine 
learning tasks, such as predicting medical [65] or facial data [66], the 
data collecting process for design tasks is harder and more 
time-consuming, and it requires experts with professional knowledge in 
design domains [67]. Therefore, there is still much work to be done 
before AI masters architectural design, from the primary design stages to 
the deeper and more detailed tasks. Therefore, this research raises the 
possibility of transforming the features in the design process into 
machine-learnable formats and applying a neural network to assist de
signers in the early design stages. 

In the future, the application of 3D generative design via machine 
learning methods mostly includes design generation in the early design 
steps. This helps designers reduce the burden of creating variable forms, 
such as the urban design, which generates variable forms quickly in 
batches [68–70]. Besides, to improve the training of the neural network, 
it is important to develop a more efficient and applicable data collection 
process for architectural data, for example an automatic system for 
collecting building information modeling data [71]. Such a resource 
would increase the accuracy of the model and create a more powerful 
“machine designer” to assist human designers. Therefore, considering 
more design features and enlarging the dataset to increase the prediction 
accuracy are the main tasks in our future research. 
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