
www.manaraa.com

Building and Environment 205 (2021) 108178

Available online 27 July 2021
0360-1323/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

A generative architectural and urban design method through artificial
neural networks

Hao Zheng a, Philip F. Yuan b,*

a Stuart Weitzman School of Design, University of Pennsylvania, Philadelphia, USA
b College of Architecture and Urban Planning, Tongji University, Shanghai, China

A R T I C L E I N F O

Keywords:
Architectural form finding
Artificial neural networks
Computational design
Machine learning

A B S T R A C T

Machine learning, as a computational tool for finding mappings between the input and output data, has been
widely used in engineering fields. Researchers have applied machine learning models to generate 2D drawings
with pixels or 3D models with voxels, but the pixelization reduces the precision of the geometries. Therefore, in
order to learn and generate 3D geometries as vectorized models with higher precision and faster computation
speed, we develop a specific artificial neural network, learning and generating design features for the forms of
buildings. A customized data structure with feature parameters is constructed, meeting the requirements of the
neural network by rebuilding surfaces with controlling points and appending additional input neurons as
quantified vectors to describe the properties of the design. The neural network is first trained with generated
design data and then tested by adjusting the feature parameters. The prediction of the generated data shows the
basic generative ability of the neural network. Furthermore, trained with design data collected from existing
buildings, the neural network learns and infers the geometric design features of architectural design with
different feature parameters, providing a data-driven method for designers to generate and analyze architectural
forms.

1. Introduction

1.1. Background

In the design process, designers create their works using models or
drawings based on their design requirements and limits [1]. Especially
in the design of forms, such as the generative design for pavilions or
high-rise buildings, its process is similar to the programming of algo
rithms; it inputs several controlling factors and outputs the generated
geometric models or drawings [2,3].

There are two algorithmic methods to generate design solutions. One
is rule-based, including the Metropolis algorithm [4], simulated
annealing [5], and the genetic algorithm [6]. These algorithms regard
the design process as an optimization problem, applying human-defined
rules to iteratively approach the solution that meets the requirements.

In architectural design, researchers have been using these algorithms
to refine their design work for decades. Simulated annealing has been
applied to solve the facility layout problem in the interior design of a
hospital [7] and generate the optimal floor plans [8], and to evaluate
and optimize a lightweight structure with high performance and low

cost [9]. Additionally, the genetic algorithm has been used to design
massing options on the basis of a site as a pixel image [10] and to look
for design solutions that optimize thermal and lighting performance in a
building [11].

However, in order to “teach” the algorithms to find the solutions,
users must clearly define the objective function f(x) [12]. That means
that, in the design field, designers must provide a clear evaluation
function to state the quality of a design instead of giving just a binary
judgment. It is difficult for designers to understand and express the exact
objective function in a mathematical way.

Another method to generate design solutions is the data-driven
process that involves artificial intelligence approaches. Artificial intel
ligence methods have been widely used in design [13] and non-design
domains, especially the applications of machine learning techniques
such as the neural networks. Machine learning as a decision-making tool
differs from simulated annealing and the genetic algorithm in that it
takes the input controlling factors and the output solutions as training
data and then calculates the mappings between the inputs and outputs.
To be specific, the process is presented as several neurons and a neural
network describing the computational relations between the inputs and

* Corresponding author.
E-mail addresses: zhhao@design.upenn.edu (H. Zheng), philipyuan007@tongji.edu.cn (P.F. Yuan).

Contents lists available at ScienceDirect

Building and Environment

journal homepage: www.elsevier.com/locate/buildenv

https://doi.org/10.1016/j.buildenv.2021.108178
Received 16 March 2021; Received in revised form 27 June 2021; Accepted 17 July 2021

mailto:zhhao@design.upenn.edu
mailto:philipyuan007@tongji.edu.cn
www.sciencedirect.com/science/journal/03601323
https://www.elsevier.com/locate/buildenv
https://doi.org/10.1016/j.buildenv.2021.108178
https://doi.org/10.1016/j.buildenv.2021.108178
https://doi.org/10.1016/j.buildenv.2021.108178
http://crossmark.crossref.org/dialog/?doi=10.1016/j.buildenv.2021.108178&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

www.manaraa.com

Building and Environment 205 (2021) 108178

2

outputs [14]. When the input feature data and the output design data are
given to the neural network, the program runs the training process with
back propagation [15] to optimize the parameters in the neural network.
Then, with the finalized network, the user can input a new set of feature
data and obtain the output design data as feedback.

Using this method, the user needs to provide the neural network with
only the design features and their corresponding design results, instead
of the objective functions, to train a "data translator", helping transform
the input data into the output design works (Fig. 1). Researchers have
applied machine learning in solving architectural, urban, and environ
mental problems in previous research [16–20]. Successful applications
of machine learning techniques in solving design problems include the
following: learning design concepts from design examples [21], learning
design shapes from point clouds [22], converting unstructured triangle
meshes into ones with consistent topology [23], classifying design ob
jects [24], and describing and categorizing the design process quanti
tatively [25].

1.2. Problem statement

In architectural design, researchers have recently applied different

neural networks to learn and generate design works. Translating visual
design data into 2D images is a convenient method to feed the design
data into neural networks. Generative adversarial networks (GANs) [26]
are used to generate design images. Previously, GANs have been used to
generate satellite images of cities [27,28]; architectural floor plans and
layouts [29,30]; street view images [31,32]; three view images of resi
dential houses [33]; the geometry of curved surfaces as black-and-white
images [34]; structural solutions with evaluation criteria [35]; and the
assembly plans for bricks [36].

In addition to the 2D pixel-based tasks, 3D convolutional neural
networks (3DCNNs) [37] and 3D generative adversarial networks
(3DGANs) [38] represent another approach to learn and infer archi
tectural data in a 3D voxel-based format. The uses of these techniques
include classifying the 3D features of buildings [39], identifying diffi
cult-to-manufacture features in 3D models [40], and generating mod
elings for industry and furniture [38].

However, training GANs requires large computational power, which
cannot be easily applied to the problem-solving in design-related scenes
[41,42]. According to the visualization of the parameters and kernels in
the neural network [29], the convolution layers in image-based neural
networks actually act to detect the boundary information from the
original image and then combine features into deeper layers for
computation. Thus, a neural network based on pixels or voxels first
translates image data into vector-like data by creating continuous white
or black pixels, then feeds the pixel data to full-connected layers for
outputting a single value (image classifier) or to deconvolution layers for
outputting another image (image generator). A large amount of
computational power is used to update millions of kernels, which only
acts to transform images into vectorized data. Thus, it is inefficient to
train image-based neural networks if vectorized data already exists in
CAD drawings or modelings in most of the architectural design cases.

Furthermore, because of the voxelization, precision is lost during the
translation between the vector data and voxel data [43]. For the
commonly used 3DGAN [38] model, the output layer only generates a
64*64*64 voxel model, which gives an aliased solution and is not
smooth enough to represent an architectural form, especially the curved
facade of a building under the design tendency of free-from surface.

In addition to the voxel-based method, there are some existing ma
chine learning techniques based on vectorized data, for example point
cloud [44,45] and graph topology [46,47]. However, the point cloud
method also requires a large number of computation resources because
the density of the point cloud directly influences the precision of the
model. Additionally, the graph-based data structure is usually used
when generating the topological relation of elements, so it is not suitable
for generating design models with geometric information.

1.3. Objectives

Therefore, in order to train a neural network to learn and generate
3D architectural geometries as vectorized models rather than pixelized
images or voxelized volumes, we introduce an artificial neural network
with a data structure customized for generating 3D forms, which enables
designers to generate architectural geometries with data-driven ma
chine learning methods by training with design examples. In this
research, our goal is to test whether this artificial neural network can
learn and generate design cases as geometries with features from
different designers and also whether it can become a tool architects can
use to quickly generate architectural forms with a design style that is
similar to the collected dataset. As a result, this method is intended to be
used as a form-finding tool in the early design stage, helping architects
improve their creativity and efficiency.

As compared with other methods on a technical level, first, the data
structure should keep the precision of the original data while the
training and generating processes should be accelerated. To achieve this,
a new data structure should be developed, storing the modeling data as a
collection of numerical vectors rather than as pixelized images. The

Fig. 1. Simulated annealing, genetic algorithm, and machine learning (artifi
cial neural networks).

H. Zheng and P.F. Yuan

www.manaraa.com

Building and Environment 205 (2021) 108178

3

vectorization and the digital representation of the design data in this
method will provide guidance and inspiration for further exploration of
intelligent algorithms in architectural design. Also, this artificial neural
network should be easy to train and implement, which does not require
extensive computational power. Due to the lack of computational power
in personal computers available to most architects, this method should
provide a light-weight neural network structure and training process to
allow fast training and generating in local computers.

Second, in order to provide more options for the generation of
architectural forms - for example, the footprints and styles - this artificial
neural network should include the input features to represent the
different requirements and constraints in the design process. By defining
the values in the input layer, designers should be able to generate the
corresponding output geometry under the control of design features.
Meanwhile, the modification of the features should be flexible, thus
broadening the potential uses of this method by providing a general
guideline for adjusting features quantitatively.

Third, by building a generative system for the case studies, this
research also aims to show a general workflow for applying machine
learning methods to predict design solutions. According to the input
features and the output results, it should be possible to adapt this system
to different generative tasks, thus helping designers to play with forms
with data-driven methods.

Last, in order to verify the capability of the neural network, two
datasets, the generated and the real, are proposed to be collected and
tested using this neural network. The successful training and predicting
of both datasets can then prove the above assumption.

2. Methodology

2.1. Data processing

In the process of generating 3D forms, usually a surface, the geo
metric data is recorded as a series of Non-Uniform Rational Basis Splines
(NURBS) defining the sections in the surface in modeling software, for
example Rhino [48]. A series of 3D points defines NURBS as controlling
points (Fig. 2). Therefore, a surface is originally defined by a grid of
points with coordinates of (x, y, z), while the points together define the
UV NURBS and further become the surface.

For example, as Fig. 3 shows, when the surface of a tower design is
deconstructed by an 8layer*10item grid of points, it can be presented as
the collection of the coordinates of the controlling points from (x00, y00,
z00) to (x79, y79, z79). Taking the process a step further, since the dis
tance between each neighboring layer remains constant and all layers
are parallel to the world XY plan, the coordinates can be simplified as a
2D vector of (x, y) and a 1D vector (H) as the height of the surface in Z

direction. That means that the surface can be expressed as a collection of
161 real numbers listed as (x00, y00, x01, y01,…, x79, y79,H), which is
acceptable for a more efficient artificial neural network.

Next, it is important to note that the sigmoid activation functions in
the neural networks are usually specially designed to learn and generate
data between 0 and 1, such as solving the binary problem [49]. In order
to obtain a better prediction of the form, all real numbers should be
standardized into a range of 0–1.

Fig. 4 shows the process of data standardization. The original model
is scaled down by scaling factors for X, Y, and Z axes, and fitted into a
box with side lengths of 1 unit in the X direction, 1 unit in the Y di
rection, and 10 units in the Z direction. Equation (1) shows the defini
tion of the scaling factors RX, RY , and RZ, in which k is a fixed coefficient,
while X Ratio, Y Ratio, and Z Ratio are parameters with values of real
numbers between 0 and 1. After the surface has been scaled down, its
bonding box in the X, Y, and Z directions coincides with that specific
box. Since all points are inside the bounding box, their coordinates (x, y)
are also real numbers between 0 and 1.

RX =
1

k*XRatio

RY =
1

k*YRatio

RZ =
1

k*ZRatio

(1)

However, when training with the data from different cases, points
with the same index contributes to the training of the same neuron,
which means they share the same weight parameter from which to learn
and generate [50]. Thus, in order to align points in each case as much as
possible, the points in each UV NURBS are rebuilt as Fig. 5 shows. After
scaling up, the closest point on the UV NURBS to the coordinates origin
(0, 0) is found and assigned as the new start point (Point 0). Then the
original UV NURBS is divided into 10 points again based on the new start
point. As a result, all points with the same index in different cases have
greater commonality and train the same neurons.

Lastly, feature parameters, as additional input neurons, describe
design data with different design strategies or styles. With these Fig. 2. Definition of the surface.

Fig. 3. Parameterization of a surface in the world coordinate system.

H. Zheng and P.F. Yuan

www.manaraa.com

Building and Environment 205 (2021) 108178

4

neurons, the neural network is able to learn and generate design data
based on the given parameters, mathematically describing the related
factors that influence the design outcomes [51].

To show an example of adding these feature parameters into the

neural network structure and test the learning ability of the neural
network, we define 9 different operations to generate the training
dataset of tower-like forms (Fig. 6). For each style, a set of 9 numbers,
either 0 or 1, is assigned as its feature parameter, showing the index of
its style. For example, (0,1, 0, 0,0, 0,0, 0,0) represents the 2nd style;
(0, 0,0, 0,0, 0,0, 0, 1) denotes the 9th style. There is always one style
assigned to each case in the training data, which means that there is only
one count of number 1 in the 9 numbers. However, forms with combined
styles can be generated by inputting feature parameters, such as (0, 0.5,
0, 0,1, 0.8, 0,0, 0.3), in the generative design process. We discuss this
over the following pages.

Therefore, with 9 sets of feature parameters in total, 9 styles of the
tower forms are generated as the training data. As Fig. 6 shows, the
forms contain two types of geometric operations and three options for
each operation. The first operation defines the basic shape of the form:
straight, gradual, or conical. Based on the overall shape, the second
operation applies distortions in different positions in the form: no
distortion, distortion in the lower position (z = 2.5), or distortion in the
middle and upper positions (z = 5 and z = 7.5). The two operations
together produce 9 types of distinguishable forms, in which the
complicated shapes increase the difficulty or learning for the neural
network. We anticipate being able to see the effects on the performance
of the neural network and evaluate its abilities by analyzing the results.

Once 100 forms are randomly generated for each style, the training
dataset contains 900 forms. For every single form, it is translated as 172
real numbers between 0 and 1, listed as x00,y00,x01,y01,…,x79,y79, X
Ratio, Y Ratio, Z Ratio, and 9 feature parameters.

2.2. Neural network training

The purpose of generative design is to generate a form based on
several given requirements [52], such as the footprint of the building
and the style of the form. To make a generative design machine for the
tower design, the input data should include basic information to allow
the neural network as well as a human designer to generate a unique
form.

Fig. 7 shows the definition of the input and output data. The data of
the controlling points in Layer 0 describes the geometry, which touches
the ground as the starting section of the form. X Ratio (XR), Y Ratio (YR),
and Z Ratio (ZR) represent the actual size of the form by showing the
scaling ratios. And the 9 feature parameters, FP1 to FP9, provide the
information on the styles, identifying the design strategies of the form.
The output data contains the rest of the controlling points from Layer 1
to Layer 7. By building the surface according to the 1 inputted and the 7
outputted UV NURBS and then scaling the surface up by the three ratios,
the form is constructed, providing the users with a 3D form for the tower
design.

Fig. 8 shows the neural network structure. In addition to the input
and output layers, each hidden layer between them acts as an operator to
combine the parameters from the previous layer and forward the pa
rameters to the next layer. Having more and larger hidden layers yields
more accurate predictions, but they also require more time for training
and predicting and increase the risk of overfitting [53]. After experi
ments, we found that the neural network with only one hidden layer of
200 neurons performed best on balance, considering both accuracy and
efficiency [54]. Therefore, a neural network with a hidden layer of 200
neurons was chosen as the basic machine learning framework.

As mentioned before, the purpose of standardizing all the real
numbers into the range of 0–1 is to allow the application of a sigmoid
activation function to the neural network. Thus, the activation function,
which calculates the parameter ŷ in the current neuron from the
parameter x in the previous neuron, can be expressed as the sigmoid
formula (Eq. (2)).

ŷ = Sigmoid(w * x+ b) =
1

1 + e− (w*x+b) (2)

Fig. 4. Model scaling and data reparameterizing.

Fig. 5. Adjusting controlling points.

H. Zheng and P.F. Yuan

www.manaraa.com

Building and Environment 205 (2021) 108178

5

For the output layer, in order to return the feedback on how much
deviation there is between the predicted output ŷ and the ground truth
output y, a mean squared error (MSE) function is chosen as the loss
function to evaluate the neural network performance and allows the
back propagation to update the neural network weight w and bias b
parameters (Eq. (3)).

Loss(y, ŷ)=
1
n
∑n

i=1
(yi − ŷi)

2 (3)

Therefore, with the neural network described above, the training

dataset of 900 forms was assigned to train and update the neural
network parameters. It took an i7-6700HQ CPU-only laptop 0.8 h to run
roughly 30,000 epochs, and ultimately, it reached an error value of 0.04
for each case (Fig. 9), which means that, on average, there is a shift of
just 0.024 units for each point.

After training, to test the performance of the neural network, the
testing dataset was generated and inputted to the neural network. In the
training process, the neural network only updates itself by learning the
training dataset without loading the testing dataset. Thus, through a
comparison of the expected forms and the predicted forms of the testing
dataset, the performance of the neural network can be evaluated.

Fig. 10 shows the forms generated from the input data with the same
controlling points in Layer 1 and different feature parameters. In the
cases of 1), 4), and 7), when no distortion applies to the forms, the loss
value is insignificant; the predicted forms and the expected forms are
analogous. However, when distortions exist, as in 2), 3), 5), 6), 8), and
9), the loss value is larger. Especially in the cases of 3), 6), and 9), in
which distortions happen in two positions, the loss value is 3–10 times
larger than that in the training dataset, and there are obvious differences
between the two corresponding forms in geometric renderings, although
the overall tendency looks synchronous. However, for the basic straight,
gradual, or conical shape, the performance also varies. In the cases of 1),
2), and 3), when the basic form is straight, the loss value is smaller than
that in the cases of 4) to 9). This is because, mathematically, the straight
form means there are no significant changes between the higher layers
and the first layer. As a result, after the distortions are applied, the
changes are smaller, and the design features are simpler for the neural
network to learn.

Generally speaking, the overall loss is in anticipation, and the pre
dicted forms are very similar to the ground truth forms. The neural
network was successfully built and trained, and it learned and practiced
the different design features in the generated dataset.

2.3. Result evaluation

Using the trained neural network as a transforming tool, one can
explore the generative design process, generating forms by inputting
different feature parameters, such as combining two feature parameters
to represent the mixture of the two styles.

First, to test the influence of the feature parameters on the forms, a
series of forms are generated by inputting a single feature parameter
with different scales, such as (0.4,0,0, 0,0, 0,0, 0,0) or

Fig. 6. Feature parameters and data generation.

Fig. 7. Input and output data.

H. Zheng and P.F. Yuan

www.manaraa.com

Building and Environment 205 (2021) 108178

6

(0, 0,0, 0,0, 0,0, 0, 0.8), as Fig. 11 shows.
In the case of 1-1), when all feature parameters are 0, an initial form

is generated, showing a basic form. It is more complicated than a simple
form because it allows one of the 9 geometric operations to deform it and
neutralize the curved parts while maintaining the ability to accept the
other 8 operations equally with different feature parameters. Then in the
cases from 1-2) to 1-6), 5 forms with the first feature parameter grad
ually changed from 0.2 to 1 are generated. The curved parts are grad
ually neutralized and disappear, and finally, the form becomes straight,
as expected. Additionally, in the cases from 2-2) to 2-6), in which conical
forms with distortions from the middle up are generated, the same
phenomenon can be observed for this geometric operation. As the
feature parameter increases, the curvature of the form gradually
changes, resulting in smooth parts.

Therefore, inputting a single feature parameter in different scales
with real numbers from 0 to 1 allows the form to be generated based on
different degrees of the corresponding operation. Designers can adjust
the scale of the design strategies by inputting different numbers and
generating a series of forms. The generation of the desired forms dem
onstrates that the neural network is suitable in data-driven generative
tasks.

Next, we test form generation with two feature parameters at the
same time. Fig. 12 shows the selected output forms with two feature
parameters, where the feature parameters are both 1. However, the re
sults are not as convincing as expected. This is exemplified by 4), whose
form is difficult to understand by looking into the feature parameters
and their corresponding operations. Moreover, in the cases of 2), 3), and
5), in the middle of the forms, it is difficult to explain why the UV NURBS
curves in the front and back run in different directions. Only the form in
the case of 1) looks reasonable, being gradual (straight + conical) with
middle-and-up distortion (no distortion + middle-and-up distortion).

Further, a special form that inputs all feature parameters as
(1, 1,1, 1,1, 1,1, 1, 1) is generated. But the neural network outputs all
numbers as 0, which means the generation process fails, without any
results. Therefore, we can assume based on the above observation that,
when a feature parameter is inputted, the corresponding operation acts
on the form. But in the training dataset, all operations squeeze and
shrink the form to some degree. Thus, if too many operations act on the
form too much, that is, the sum of all 9 feature parameters exceeds a
certain number, the form cannot exist with legal operations.

Accordingly, in the next test, whose results are shown in Fig. 13, the
sum of the two inputted feature parameters is always 1. The results show
a clear path of change in the forms from the case of 1) to the case of 6).

Fig. 8. Neural network structure.

Fig. 9. Training epoch and loss.

H. Zheng and P.F. Yuan

www.manaraa.com

Building and Environment 205 (2021) 108178

7

Unlike in the previous forms, feature parameters with different pro
portions lead to the generation of a series of forms, showing the inter
mediate forms between two styles.

Therefore, inputting two feature parameters in different proportions
with a sum of 1 generates a form in a combined style, presenting both
features. Designers can adjust the proportion of the two design strategies
by inputting different numbers, and they can generate a series of forms,
even if the same feature parameters are not included in the training
dataset. It also shows the ability of the neural network to infer nonex
istent design strategies by learning from the existing data.

2.4. Methods comparison

With the initial experiment above, we fine-tuned the hyper
parameters for the training process while comparing the performance of
each combination of hyperparameters, in order to find the neural
network settings with highest accuracy.

First, we compared the efficiency of ANN and GAN. As we state in the
objectives, the training cost of our vector-based ANN model should be
lower than pixel-based GAN models. Table 1 shows the comparison of
the two models. The initial hyperparameters for our ANN model con
tains: 2 layers (1 hidden layer); 200 neurons in the hidden layer; and
Adam optimizer with the learning rate of 0.001. We applied pix2pixHD
[55] as the GAN model for comparison. Using an i7-6700HQ CPU, the
training of our ANN model cost 0.8 h for 30000 epoch. To train the GAN
model, we transformed the curvatures into 8 groups of black-and-white

images, thus it required the training of 7 models for generating the
surface information. With the acceleration of a Tesla-P100 GPU, the
training still cost around 60 h in total. This comparison supports our
assumption that our ANN model is light-weighted and fast for training.

Second, besides ANN, there are other vector-based machine learning
models being used in solving design-related problems. Therefore, we
compared the accuracy of different vector-based machine learning
models with our ANN model. Table 2 shows the 5-fold cross-validation
accuracy of each model. Compared with other models such as the
Random Forest Regressor and the Linear Regressor, our ANN model
presents a highest accuracy of 98.05%.

Furthermore, we adjusted the number of layers to compare the ac
curacy of each ANN model derived from our initial model (Table 3). It
shows a highest accuracy of the initial model with 2 layers (1 hidden
layer). Thus, the 2-layer ANN model performs best in our generative
task.

Third, the hyperparameters during the training process also influ
ence the accuracy. Table 4 shows the comparison of the training results
with different optimizers. According to the 5-fold cross-validation, we
selected Adam optimizer since it showed a highest accuracy with a fixed
number of training epoch.

With Adam optimizer, we further changed the learning rate and
compared the performance of each model (Table 5). When the learning
rate was set to 0.001, it resulted in a highest accuracy. Therefore, we set
our ANN model with 2 layers and Adam optimizer with the learning rate
of 0.001.

Fig. 10. Expected forms and predicted forms from test dataset.

H. Zheng and P.F. Yuan

www.manaraa.com

Building and Environment 205 (2021) 108178

8

3. Implementations

Based on the generated results above, it has been shown that the
artificial neural network has the ability to learn the features of the 3D
forms in the training process. As a new method for finding forms, various
geometries can be created by inputting certain site conditions, while
combining with adjustable design strategies. Moreover, in order to add
more practical application meanings to the neural network, it is neces
sary to use real-world data to test and develop the feasibility of the
neural network. To that end, in addition to the training of the generated
data, data on existing buildings in the real world were collected as the
training data.

However, when the influencing factors on the forms of the existing
buildings are considered, there are several choices for defining the
feature parameters, such as the completion year, architectural firm,
location, material, or function. But since the amount of data is limited,
and an excess of feature parameters causes the neural network to fail and
output confusing results [56] only one type of feature parameter is set to
be included in each training. In addition, in order to improve the neural
network’s future prediction ability on a wider scale, the completion year
and the architecture firm for individual styles are defined as the feature
parameter in two separate training sessions below, representing the
general building context. Both of the generating processes can be

Fig. 11. Generating with gradually changed feature parameters.

Fig. 12. Generating forms with two binary feature parameters.

H. Zheng and P.F. Yuan

www.manaraa.com

Building and Environment 205 (2021) 108178

9

summarized as three main steps: 1) data processing, 2) neural network
training, and 3) design generation.

3.1. Training with completion years

In this training session, the feature parameter is defined as the
completion years of the existing buildings. A sample of 90 high-rises
completed from 1990 to 2030 worldwide was gathered and used as
the training dataset for predicting the general development trends of
global tower designs.

First, at the data preparation stage, it is necessary to edit the models
to match the neural network’s data structure. As Fig. 14 shows, the
original model collected from the internet is usually too complicated,
with a lot of details that have little influence on the overall form.
Therefore, a simplified model needs to be built by extracting the main
section curves and lofting them together. In detail, the model simplifi
cation process starts with closing all geometries in the original model,
resulting in a new model that only contains closed meshes. Then, eight
boundary sections are generated by contouring the new model from
bottom to top as curves. Last, the section curves are lofted together as the
final simplified model.

After obtaining the proper models, the completion years of the
buildings are converted into machine-learnable data by specifying a real
number series from 0 to 1 as the year from 1990 (or earlier) to 2030 (or
later) for standardization. As there are only 5 towers in the dataset built
before 1990, it is more efficient to set them all as the minimum year of
1990 to avoid the waste of parameter range. In addition, the maximum
year is set as 2030 to make the neural network predict the form of towers
in the future by inputting a feature parameter larger than the values in
the training dataset. Therefore, the input data contains 24 neurons: 20

Fig. 13. Generating forms with two real feature parameters.

Table 1
Comparison of the training cost in ANN and GAN.

Resolution Device Training Epoch Training Time

ANN numeric i7-67000HQ
(CPU)

30000 0.8 h

GAN 512*512 (pixel) Tesla-P100 (GPU) 100*7 8.5*7 h

Table 2
Comparison of the accuracy of different machine learning methods.

5-Fold Cross-validation Accuracy (%)

ANN 98.05
Decision Tree Regressor 95.57
Bagging Regressor 96.62
Random Forest Regressor 96.58
Extra Trees Regressor 96.96
Linear Regressor 97.85

Table 3
Comparison of the accuracy of ANNs with different numbers of layers.

5-Fold Cross-validation Accuracy (%)

1-layer ANN 97.45
2-layer ANN 98.05
3-layer ANN 97.39
4-layer ANN 95.43

Table 4
Comparison of the accuracy of ANNs with different optimizers in training.

5-Fold Cross-validation Accuracy (%)

Adadelta 74.97
Adagrad 88.26
Adam 98.05
Ftrl 95.86
Gradient Descent 88.05
RMSProp 97.34

Table 5
Comparison of the accuracy of ANNs with different learning rate for
Adam optimizer in training.

5-Fold Cross-validation Accuracy (%)

0.0001 96.98
0.001 98.05
0.01 81.15
0.1 56.14

H. Zheng and P.F. Yuan

www.manaraa.com

Building and Environment 205 (2021) 108178

10

real numbers for the controlling points in the first layer, 3 real numbers
for the scaling ratios, and 1 real number for the completion year.

Nevertheless, another problem is the lack of training data. Compared
with the 900 generated training forms, 90 collected forms might not be
enough to train the same neural network. But since a form has no
orientation, rotated forms with the same model are also acceptable as
separate data. This fact allows for 270 more forms to be created by
rotating the original forms by 90, 180, and 270◦. Then, the controlling
point data extracted from the 360 total buildings are prepared for the
training process. After training, the loss value reached the same level
compared to the previously generated neural network, indicating the
new neural network should have the same ability to generate forms with
different feature parameter values.

With the trained neural network, the generative design process can
be achieved using a similar method for the previous neural network. The
difference is that, besides the 20 parameters for the first layer repre
senting the footprint, the feature parameter contains only the comple
tion year in the new neural network; however, the parameter can be any
continuous real number between 0 and 1. Therefore, a set of gradually
changed feature parameter values can be assigned to the inputted
footprint to generate a series of forms, representing the predicted tower
designs in different completion years with the same footprint.

To be specific, in Fig. 15, the case of 2005) is the original simplified
model, Q1 Tower in Queensland completed in 2005. With the same
footprint but different feature parameters, 41 predicted forms from
1990) to 2030) are listed. The gradual changes in forms are clear from
left to right, showing the different simplified design strategies in

different years. Although the design should not be similar from year to
year, the results show gradual rather than sudden change because the
training data is still not sufficient to cover all conditions. As a result, the
neural network outputs a mathematically average form between two
existing cases, causing the inadequate prediction. However, the
remarkable trait of this generative design method is the ability to pro
duce new and variable forms according to the limited training data,
giving designers more choices to select from. Especially when upcoming
years are used as feature parameters, the predicted forms represent a
possible design trend of the future, showing the ability of the neural
network to learn and deduce design rules.

However, the design trend sometimes varies according to different
boundary conditions. For example, Figs. 16 and 17 show the forms
predicted from the footprints of two buildings, Q1 Tower and The Torch.
The change tendencies of the forms display different results. In the case
of Q1 Tower, Form 1990) is more distorted than Form 2030), while in
the case of The Torch, Form 2030) is more distorted than Form 1990).
This phenomenon indicates that footprint also performs a major role in
predicting, even if it varies a little in the two cases.

3.2. Training with design styles

In this experiment (also presented at the DigitalFUTURES Shanghai
2019 Workshop Group 7-2), the feature parameter is redefined as the
design styles of different architects. To build the training dataset, 184
models of completed buildings are collected, representing 7 groups of
designers (Le Corbusier, MAD, Gensler, Zaha Hadid Architects, Tadao
Ando, BIG, and SOM). However, the objectives are expanded to common
architectural works, thus the combined proportions of different archi
tects can generate forms with mixed design styles (Fig. 18).

Next, the models gathered online should be simplified and then
unified into closed surface. In contrast to the tower collections, the
architectural works in general increase the complexity in forms and

Fig. 14. Model simplification.

Fig. 15. Predicted forms with the same footprint but different feature parameters (completion year).

Fig. 16. Predicted forms with the footprint of Q1 Tower.

H. Zheng and P.F. Yuan

www.manaraa.com

Building and Environment 205 (2021) 108178

11

design methods while decreasing the values of building levels. Specif
ically, when extracting the 2D vectors form 3D models, the previously
stated rule of an 8layer*10item grid of points may not be enough to
summarize the complicated forms. Thus, the controlling points extracted
from each building are increased to 10 layers with 20 points per layer,
indicating that the 3D mesh can be translated into a collection of 400
real numbers, which develops more inclined mapping between the

original forms and the training data (Fig. 19).
In addition, since the difference of the heights of the collected

buildings is smaller than that of the towers in the generated case, the
height set in the bounding box for the data reparameterization (10 units
in the Z direction) is not suitable for scaling the values of this model
collection. As a result, the unit value in the Z direction is decreased to 2,
in order to obtain a more even numeric distribution of Z Ratio. Thus,
after the controlling points are aligned and rebuilt, the training data
structure is then changed into x0,y0,…,x199,y199, X Ratio, Y Ratio, Z
Ratio, and 7 feature parameters - that is, a series of 410 real numbers for
each building.

As a result, the input data contains 50 neurons - 40 real numbers for
the controlling points in Layer 0, 3 real numbers for the scaling ratios,
and 7 feature parameters indicating 7 architecture companies. The
number of neurons in the hidden layer is also enlarged to 500 due to the
increased complexity of the data structure. The final outputs involve 360
neurons from Layer 1 to Layer 9 with 180 controlling points in total
(Fig. 20). Furthermore, due to the complicated forms of the distin
guished styles, the rotation method is also used for strengthening the
training data; 1288 more forms are created by rotating the original
models by 45, 90, 135, 180, 225, 270 and 315◦. Finally, 1472 stylized
forms in total are prepared for the next stage of the neural network
training.

Before training, we implemented a k-means clustering method [57]
with a K value of 7 to test whether the seven groups of forms are similar
or can be easily distinguished by seven clusters. Specifically, we
implemented the script in Python with Numpy for numeric processing.
For the data structure, we maintained the 410-dimensional vector for

Fig. 17. Predicted forms with the footprint of The Torch.

Fig. 18. Workflow of the training and generative design with different architects’ design styles.

Fig. 19. Controlling points extraction process with 10 layers and 20 points for each layer.

H. Zheng and P.F. Yuan

www.manaraa.com

Building and Environment 205 (2021) 108178

12

each form while standardizing the values (Eq. (4)). After clustering,
Fig. 21 shows the distribution of the members in each cluster. According
to the distribution, we used purity measure [58] to evaluate the accu
racy. The result shows an overall accuracy of 26.06%, which is higher
than the random-guess accuracy of 17 (14.29%).

xstandardized =
x − mean(x)

standarddeviation(x)
(4)

Additionally, according to Fig. 21, each group of forms is gathered
into different clusters, with a tendency to be certain styles. For example,
in the group of Gensler, MAD, BIG, and SOM, a large amount of forms are
grouped into clusters 2 and 6. However, most forms in the group of Zaha
are collected into clusters 1 and 2, whereas most forms in the group of Le
Corbusier and Tadao are gathered into clusters 1, 2, and 6. We might
understand this phenomenon as the classification of design styles, in
which cluster 2 represents the general architectural design style for all
groups and cluster 6 represents the commercial design style for com
panies such as Gensler and SOM, whereas cluster 1 represents the
emerging design style with more complex forms and more for individual
architects, for example Zaha, Le Corbusier, and Tadao. Therefore, the
features of each group might be represented in a higher dimension that
combines different design styles.

Generally speaking, however, from the k-means clustering experi
ment above, we can reach a primary conclusion that the features in the
dataset can be learned with machine learning techniques. Although the
clustering does not indicate a high accuracy to distinguish the features, it
is still available to use networks to further learn the features.

After training, the loss value reached a relatively stable level
compared with the neural network trained by the generated data, thus
showing the ability of the neural network model to generate forms with

various mixtures of design styles. According to the 7 styles and their
corresponding parameters in the features, different combinations of the
influencing parameters are tested in the next stage.

In the generative design process, Fig. 22 shows a path of predicted
results in the cases from 1) to 7) with the same footprint and height
conditions and with two gradually changed proportions of the Le Cor
busier style and the MAD style with a feature parameter sum of 1. The
form designed by Le Corbusier is usually centroid and linear [59],
whereas MAD usually prefers a non-linear form with complex surfaces
[60].

As our result shows, a higher proportion of the Le Corbusier style led
to simpler and more regular generated forms. However, increasing the
proportion of MAD caused the geometries to become more distorted and
finally result in a curved form. These traits visually reflect the differ
ences in the design styles of these two architects. By training with self-
collected datasets, designers can apply this method to combine two or
more design styles into one, to create inspirational forms for design
exploration.

Similarly, with the same footprint and height, more stylized com
bined forms are generated and compared during this process. Fig. 23
also presents the changeable feature parameters between Gensler and
Tadao Ando and between BIG and Zaha Hadid Architects, leading a
series of hybrid forms with intermediary mappings of contrastive styles.
Generally speaking, the generated results point out a tendency in Tadao
Ando’s style to use more regular geometries, whereas others present a
preference for uncommon curvatures. This observation matches the
design styles by those architects [61–64]. A more detailed
cross-comparison can be achieved similarly by testing other combina
tions of the feature parameters, thus providing designers with an
analytical tool for design styles.

To further verify the above conclusions, we designed a questionnaire

Fig. 20. Neural network structure with FC layers.

Fig. 21. Distribution of the clusters for each group of forms.

H. Zheng and P.F. Yuan

www.manaraa.com

Building and Environment 205 (2021) 108178

13

with three binary evaluations for the generated forms in Figs. 22 and 23,
and we asked trained architects to distinguish the design styles. Each
question asks a participant to match the forms with the architects
(Fig. 24). The participant were required to have a bachelor’s or master’s
degree in architecture or a related field, and they were required to have
no prior knowledge of this research. A total of 40 architects participated
in this questionnaire.

According to the results, 100% of the participants successfully
distinguished the Le Corbusier form from the MAD form and 90% of the
participants distinguished the Gensler form from the Tadao form, but
only 55% of the participants successfully distinguished the BIG form
from the Zaha form. When questioned about the reason, most of the
participants mentioned that they rely on the complexity of the forms to
identify the styles. For example, the right form in the first question is
more complex than the left form, thus it is regarded as the MAD form
instead of the Le Corbusier form. The second question is similar in that
the more complex form is marked as the Gensler form rather than the
Tadao form. However, in the third question, the two forms are similar;
even though the Zaha form is usually more complex than the BIG form,
the participants could not distinguish these two similar forms. This
result reveals that the design styles of BIG and Zaha have some common
points from the perspective of data science and machine learning.

Moreover, when considering the geometry parameters, the

generated results are not always the same for different heights with fixed
feature parameters. In Fig. 25, the increase of height decreases the
surface complexity and the degree of distortion of the output geometries.
This phenomenon indicates that the height setting also has an influence
on predicting the forms.

Lastly, for further testing the applicability of the neural network on
an urban scale larger than a singular architectural unit, experiments are
performed on different city patterns. Based on the generating effects of
the two real-world training neural networks, 3 urban functional blocks
and an ideal city panorama are both created for inspiring the city de
signers at an early stage (Fig. 26 and Fig. 27).

In summary, in the training of real-world data, this paper has shown
the feasibility of applying neural networks in 3D generative design.
Different settings and inputs of feature parameters can be used to train
variable neural networks and generate forms according to the re
quirements of designers. Table 6 shows the computation cost of the three
cases discussed in this paper, which supports that our ANN model is
light-weighted and requires small computation cost.

4. Conclusion and discussion

The artificial neural network is a novel tool for 3D generative design,
especially when only the input and output design data is given, rather

Fig. 22. Predicted forms with changing feature parameters of Le Corbusier and MAD on the same footprint.

Fig. 23. Predicted forms with different changing feature parameters for other architects on the same footprint.

Fig. 24. The questionnaire contained three questions asking the participants to select the architects for the forms.

H. Zheng and P.F. Yuan

www.manaraa.com

Building and Environment 205 (2021) 108178

14

Fig. 25. Predicted forms with gradually changed height and a fixed feature parameter.

Fig. 26. Generation of functional urban blocks.

Fig. 27. Predicted panorama of a city.

H. Zheng and P.F. Yuan

www.manaraa.com

Building and Environment 205 (2021) 108178

15

than the clear design strategies. Customized data and neural network
structures help to translate the design forms into computational data and
map design features to several controllable parameters. By inputting
different feature parameters, either a single parameter with different
scales or combined parameters with different proportions, this genera
tive design machine can generate 3D forms according to the features
given by designers.

When the neural network is trained with the data collected from
existing architecture, it can be used to learn and infer design data with
different features, helping architectural researchers digitally redefine
design strategies hidden among massive and variable design data. Then,
designers can easily apply the trained neural network to the generation
of forms and quickly generate designs with different features.

However, training a highly accurate neural network to generate
design solutions requires a large amount of data, which shows the lim
itation of this data-driven generative design method, especially given
the lack of architectural datasets [30]. Compared with other machine
learning tasks, such as predicting medical [65] or facial data [66], the
data collecting process for design tasks is harder and more
time-consuming, and it requires experts with professional knowledge in
design domains [67]. Therefore, there is still much work to be done
before AI masters architectural design, from the primary design stages to
the deeper and more detailed tasks. Therefore, this research raises the
possibility of transforming the features in the design process into
machine-learnable formats and applying a neural network to assist de
signers in the early design stages.

In the future, the application of 3D generative design via machine
learning methods mostly includes design generation in the early design
steps. This helps designers reduce the burden of creating variable forms,
such as the urban design, which generates variable forms quickly in
batches [68–70]. Besides, to improve the training of the neural network,
it is important to develop a more efficient and applicable data collection
process for architectural data, for example an automatic system for
collecting building information modeling data [71]. Such a resource
would increase the accuracy of the model and create a more powerful
“machine designer” to assist human designers. Therefore, considering
more design features and enlarging the dataset to increase the prediction
accuracy are the main tasks in our future research.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgment

All real-world training 3D models are collected from Google 3D
Warehouse or built by the authors. The selection of the towers refers to
the data from the Skyscraper Center. Tensorflow in Python is used as the
programming framework for the neural network.

This article is supported by the National Natural Science Foundation
of China (Grant No. U1913603), and Shanghai Science and Technology
Committee (Grant No. 18DZ1205604). Special thanks to all students
(Chao Weng, Donglai Yang, Feng Shi, Hainan Yan, Hanyong Xu, Jiageng

Chen, Jiewei Li, Li Yang, Qi Yang, Shilong Zhu, Shiqi Liang, Xiaobai Ji,
Xinxing Chen, Xinyu Xia, Yibo Zhong, Yifan Huang, Yue Ren, Zhiming
Niu, Zilin Zhou) and the teaching assistant (Youyuan Luo) in the Digi
talFUTURES Shanghai 2019 workshop group 7-2!

References

[1] M. Carpo, The Alphabet and the Algorithm, Mit Press, 2011. ISBN 9780262515801.
[2] M. Carpo, The Digital Turn in Architecture 1992-2012, John Wiley & Sons, 2013.

ISBN 9781118425916.
[3] M. Carpo, The Second Digital Turn: Design beyond Intelligence, MIT press, 2017.

ISBN 9780262534024.
[4] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation

of state calculations by fast computing machines, J. Chem. Phys. 21 (6) (1953)
1087–1092, https://doi.org/10.1063/1.1699114.

[5] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing,
Science 220 (4598) (1983) 671–680, https://doi.org/10.1142/9789812799371_
0035.

[6] J.H. Holland, et al., Adaptation in Natural and Artificial Systems: an Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence, MIT
press, 1992, https://doi.org/10.7551/MITPRESS/1090.001.0001.

[7] I.-C. Yeh, Architectural layout optimization using annealed neural network, Autom.
ConStruct. 15 (4) (2006) 531–539, https://doi.org/10.1016/J.
AUTCON.2005.07.002.

[8] H. Zheng, Y. Ren, Architectural layout design through simulated annealing
algorithm, in: Proceedings of the 25th International Conference on Computer-
Aided Architectural Design Research in Asia (CAADRIA), 2020, pp. 275–284. htt
p://papers.cumincad.org/cgi-bin/works/paper/caadria2020_024.

[9] F.O. Sonmez, C. Tan, Structural optimization using simulated annealing, Simulat.
Annealing (2008) 281–306, https://doi.org/10.5772/5567.

[10] G. Barczik, R. Kruse, Shifting design work from production to evaluation - an
evolutive design tool, in: Proceedings of the 34th eCAADe Conference, 2016,
pp. 109–115. http://papers.cumincad.org/cgi-bin/works/paper/ecaade2016_150.

[11] L.G. Caldas, L.K. Norford, A design optimization tool based on a genetic algorithm,
Autom. ConStruct. 11 (2) (2002) 173–184, https://doi.org/10.1016/S0926-5805
(00)00096-0.

[12] D. Whitley, A genetic algorithm tutorial, Stat. Comput. 4 (2) (1994) 65–85, https://
doi.org/10.1007/BF00175354.

[13] T. Hong, Z. Wang, X. Luo, W. Zhang, State-of-the-art on research and applications
of machine learning in the building life cycle, Energy Build. 212 (2020) 109831,
https://doi.org/10.1016/j.enbuild.2020.109831.

[14] W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous
activity, Bull. Math. Biophys. 5 (4) (1943) 115–133, https://doi.org/10.1007/
BF02459570.

[15] P. Werbos, Beyond Regression:" New Tools for Prediction and Analysis in the
Behavioral Sciences, Ph. D. dissertation, Harvard University, 1974, https://ci.nii.ac
.jp/naid/10004070196/.

[16] H. Park, D.Y. Park, Comparative analysis on predictability of natural ventilation
rate based on machine learning algorithms, Build. Environ. (2021) 107744,
https://doi.org/10.1016/j.buildenv.2021.107744.

[17] R. Zhang, P.A. Mirzaei, Virtual dynamic coupling of computational fluid dynamics-
building energy simulation-artificial intelligence: case study of urban
neighbourhood effect on buildings’ energy demand, Build. Environ. (2021)
107728, https://doi.org/10.1016/j.buildenv.2021.107728.

[18] Y. Liu, Z. Pang, M. Karlsson, S. Gong, Anomaly detection based on machine
learning in iot-based vertical plant wall for indoor climate control, Build. Environ.
183 (2020) 107212, https://doi.org/10.1016/j.buildenv.2020.107212.

[19] J. Kim, Y. Zhou, S. Schiavon, P. Raftery, G. Brager, Personal comfort models:
predicting individuals’ thermal preference using occupant heating and cooling
behavior and machine learning, Build. Environ. 129 (2018) 96–106, https://doi.
org/10.1016/j.buildenv.2017.12.011.

[20] S.-J. Cao, C. Ren, Ventilation control strategy using low dimensional linear
ventilation models and artificial neural network, Build. Environ. 144 (2018)
316–333, https://doi.org/10.1016/j.buildenv.2018.08.032.

[21] M.L. Maher, H. Li, Learning design concepts using machine learning techniques, AI
EDAM (Artif. Intell. Eng. Des. Anal. Manuf.) 8 (2) (1994) 95–111, https://doi.org/
10.1017/S0890060400000706.

[22] P. Achlioptas, O. Diamanti, I. Mitliagkas, L. Guibas, Learning Representations and
Generative Models for 3d Point Clouds, arXiv preprint arXiv:1707.02392, 2017.

[23] N. Umetani, Exploring generative 3d shapes using autoencoder networks, in:
SIGGRAPH Asia 2017 Technical Briefs, 2017, pp. 1–4, https://doi.org/10.1145/
3145749.3145758.

[24] M. Rucco, F. Giannini, K. Lupinetti, M. Monti, A methodology for part classification
with supervised machine learning, AI EDAM (Artif. Intell. Eng. Des. Anal. Manuf.)
33 (1) (2019) 100–113, https://doi.org/10.1017/S0890060418000197.

[25] W. Huang, X. Su, M. Wu, L. Yang, Category, process, and recommendation of
design in an interactive evolutionary computation interior design experiment: a
data-driven study, Artif. Intell. Eng. Des. Anal. Manuf. (2020) 1–15, https://doi.
org/10.1017/S0890060420000050.

[26] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, Y. Bengio, Generative adversarial nets, in: Advances in neural
information processing systems, 2014, pp. 2672–2680. https://papers.nips.cc/pa
per/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.

Table 6
Training device and computation cost of each case in this paper.

Device Number of
Samples

Training
Epoch

Training
Time

Generated Data i7-67000HQ
(CPU)

900 30000 0.8 h

Completion-Year
Data

i7-67000HQ
(CPU)

360 30000 0.3 h

Design-Style
Data

i7-67000HQ
(CPU)

1472 30000 3.2 h

H. Zheng and P.F. Yuan

http://refhub.elsevier.com/S0360-1323(21)00579-5/sref1
http://refhub.elsevier.com/S0360-1323(21)00579-5/sref2
http://refhub.elsevier.com/S0360-1323(21)00579-5/sref2
http://refhub.elsevier.com/S0360-1323(21)00579-5/sref3
http://refhub.elsevier.com/S0360-1323(21)00579-5/sref3
https://doi.org/10.1063/1.1699114
https://doi.org/10.1142/9789812799371_0035
https://doi.org/10.1142/9789812799371_0035
https://doi.org/10.7551/MITPRESS/1090.001.0001
https://doi.org/10.1016/J.AUTCON.2005.07.002
https://doi.org/10.1016/J.AUTCON.2005.07.002
http://papers.cumincad.org/cgi-bin/works/paper/caadria2020_024
http://papers.cumincad.org/cgi-bin/works/paper/caadria2020_024
https://doi.org/10.5772/5567
http://papers.cumincad.org/cgi-bin/works/paper/ecaade2016_150
https://doi.org/10.1016/S0926-5805(00)00096-0
https://doi.org/10.1016/S0926-5805(00)00096-0
https://doi.org/10.1007/BF00175354
https://doi.org/10.1007/BF00175354
https://doi.org/10.1016/j.enbuild.2020.109831
https://doi.org/10.1007/BF02459570
https://doi.org/10.1007/BF02459570
https://ci.nii.ac.jp/naid/10004070196/
https://ci.nii.ac.jp/naid/10004070196/
https://doi.org/10.1016/j.buildenv.2021.107744
https://doi.org/10.1016/j.buildenv.2021.107728
https://doi.org/10.1016/j.buildenv.2020.107212
https://doi.org/10.1016/j.buildenv.2017.12.011
https://doi.org/10.1016/j.buildenv.2017.12.011
https://doi.org/10.1016/j.buildenv.2018.08.032
https://doi.org/10.1017/S0890060400000706
https://doi.org/10.1017/S0890060400000706
http://refhub.elsevier.com/S0360-1323(21)00579-5/sref22
http://refhub.elsevier.com/S0360-1323(21)00579-5/sref22
https://doi.org/10.1145/3145749.3145758
https://doi.org/10.1145/3145749.3145758
https://doi.org/10.1017/S0890060418000197
https://doi.org/10.1017/S0890060420000050
https://doi.org/10.1017/S0890060420000050
https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

www.manaraa.com

Building and Environment 205 (2021) 108178

16

[27] H. Zheng, Drawing with bots: human-computer collaborative drawing
experiments, in: Proceedings of 23rd International Conference on Computer-Aided
Architectural Design Research in Asia, 2018, pp. 1–6. https://www.researchgate.
net/publication/325117957_Drawing_with_Bots_Human-computer_Collaborative_
Drawing_Experiments.

[28] R. Tian, Suggestive site planning with conditional gan and urban gis data, in:
Proceedings of the 2nd International Conference on Computational Design and
Robotic Fabrication (CDRF), Springer, 2020, pp. 103–113, https://doi.org/
10.1007/978-981-33-4400-6_10.

[29] W. Huang, H. Zheng, Architectural drawings recognition and generation through
machine learning, in: Proceedings of the 38th Annual Conference of the Association for
Computer Aided Design in Architecture, 2018, pp. 156–165. Mexico City, Mexico,
http://papers.cumincad.org/data/works/att/acadia18_156.pdf.

[30] D. Newton, Deep generative learning for the generation and analysis of
architectural plans with small datasets, in: Proceedings of ECAADE SIGRADI 2019,
2019, pp. 21–28, https://doi.org/10.5151/PROCEEDINGS-ECAADESIGRADI2019_
135.

[31] H. Kinugawa, A. Takizawa, “Deep learning model for predicting preference of
space by estimating the depth information of space using omnidirectional images,
in: Architecture in the Age of the 4th Industrial Revolution-Proceedings of the 37th
eCAADe and 23rd SIGraDi Conference, 2, 2019, pp. 61–68, https://doi.org/
10.5151/PROCEEDINGS-ECAADESIGRADI2019_339.

[32] A. Noyman, K. Larson, A deep image of the city: generative urban-design
visualization, in: The 11th annual Symposium on Simulation for Architecture and
Urban Design (SimAUD), 2020, pp. 161–168, in: http://simaud.org/2020
/proceedings/35.pdf.

[33] K. Steinfeld, K. Park, A. Menges, S. Walker, “Fresh eyes – a framework for the
application of machine learning to generative architectural design, and a report of
activities at smartgeometry 2018, in: Proceedings of the 18th International
Conference on CAAD Futures, 2019, pp. 32–46. http://papers.cumincad.org/data/
works/att/cf2019_003.pdf.

[34] G. Rossi, P. Nicholas, Re/learning the wheel: methods to utilize neural networks as
design tools for doubly curved metal surfaces, in: ACADIA 2018: Recalibration. On
Imprecision and Infidelity, 2019, pp. 146–155. http://papers.cumincad.org/cgi-bi
n/works/paper/acadia18_146.

[35] M. Turlock, K. Steinfeld, Necessary tension, in: Design Modelling Symposium,
Springer, Berlin, 2019, pp. 250–262, https://doi.org/10.1007/978-3-030-29829-6_
20.

[36] B.A. Zandavali, M.J. García, Automated brick pattern generator for robotic
assembly using machine learning and images, in: Proceedings of ECAADE SIGRADI
2019, 2019, pp. 217–226, https://doi.org/10.5151/PROCEEDINGS-
ECAADESIGRADI2019_605.

[37] S. Ji, W. Xu, M. Yang, K. Yu, 3d convolutional neural networks for human action
recognition, IEEE Trans. Pattern Anal. Mach. Intell. 35 (1) (2012) 221–231,
https://doi.org/10.1109/TPAMI.2012.59.

[38] J. Wu, C. Zhang, T. Xue, B. Freeman, J. Tenenbaum, Learning a probabilistic latent
space of object shapes via 3d generative adversarial modeling, in: Advances in
Neural Information Processing Systems, 2016, pp. 82–90, in: https://proceedings.
neurips.cc/paper/2016/file/44f683a84163b3523afe57c2e008bc8c-Paper.pdf.

[39] D. Newton, Multi-objective qualitative optimization (moqo) in architectural
design, in: Proceedings of the 36th eCAADe, 2018, pp. 187–196. http://papers.
cumincad.org/cgi-bin/works/paper/ecaade2018_323.

[40] S. Ghadai, A. Balu, S. Sarkar, A. Krishnamurthy, Learning localized features in 3d
cad models for manufacturability analysis of drilled holes, Comput. Aided Geomet.
Des. 62 (2018) 263–275, https://doi.org/10.1016/J.CAGD.2018.03.024.

[41] H. Zheng, K. An, J. Wei, Y. Ren, Apartment floor plans generation via generative
adversarial networks, in: Proceedings of the 25th International Conference on
Computer-Aided Architectural Design Research in Asia (CAADRIA), 2020,
pp. 601–610. http://papers.cumincad.org/cgi-bin/works/paper/caadria2020_015.

[42] J. Shen, C. Liu, Y. Ren, H. Zheng, Machine learning assisted urban filling, in:
Proceedings of the 25th International Conference on Computer-Aided Architectural
Design Research in Asia (CAADRIA), 2020, pp. 681–690. http://papers.cumincad.
org/cgi-bin/works/paper/caadria2020_054.

[43] K.T. Islam, R.G. Raj, A. Al-Murad, Performance of svm, cnn, and ann with bow,
hog, and image pixels in face recognition, in: 2017 2nd International Conference on
Electrical&Electronic Engineering (ICEEE),, IEEE, 2017, pp. 1–4, https://doi.org/
10.1109/CEEE.2017.8412925.

[44] P. Achlioptas, O. Diamanti, I. Mitliagkas, L. Guibas, Learning representations and
generative models for 3d point clouds, in: International conference on Machine
Learning, PMLR, 2018, pp. 40–49. https://arxiv.org/abs/1707.02392.

[45] A. Bidgoli, P. Veloso, Deep cloud. The Application of a Data-driven, Generative
Model in Design, arXiv preprint arXiv:1904.01083, 2019, https://arxiv.org/abs/1
904.01083.

[46] F. Scarselli, M. Gori, A.C. Tsoi, M. Hagenbuchner, G. Monfardini, The graph neural
network model, IEEE Trans. Neural Network. 20 (1) (2008) 61–80, https://doi.
org/10.1109/TNN.2008.2005605.

[47] W. Jabi, A. Alymani, Graph machine learning using 3d topological models, in:
Proceedings of the 11th Annual Symposium on Simulation for Architecture and Urban
Design (SimAUD), 2020, pp. 427–434. Vienna, Austria, http://orca.cf.ac.
uk/131855/.

[48] R. McNeel, “ Rhinoceros, NURBS modeling for Windows, Comput. Software
(2020). http://www.rhino3d.com/.

[49] A. Wanto, A.P. Windarto, D. Hartama, I. Parlina, Use of binary sigmoid function
and linear identity in artificial neural networks for forecasting population density,
Int. J. Inform. Syst. Technol. 1 (1) (2017) 43–54, https://doi.org/10.30645/
IJISTECH.V1I1.6.

[50] M.H. Hassoun, et al., Fundamentals of Artificial Neural Networks, MIT press, 1995.
ISBN 9780262514675.

[51] A. Lorensuhewa, S. Geva, B. Pham, Inferencing design styles using bayesian
networks, Ruhuna J. Sci. 1 (1) (2012), https://doi.org/10.4038/RJS.V1I0.71.

[52] D. Piker, Kangaroo: form finding with computational physics, Architect. Des 83 (2)
(2013) 136–137, https://doi.org/10.1002/AD.1569.

[53] S. Karsoliya, Approximating number of hidden layer neurons in multiple hidden
layer bpnn architecture, Int. J. Eng. Trends Technol. 3 (6) (2012) 714–717. http
://www.ijettjournal.org/volume-3/issue-6/IJETT-V3I6P206.pdf.

[54] N. Hovakimyan, F. Nardi, A. Calise, N. Kim, Adaptive output feedback control of
uncertain nonlinear systems using singlehidden-layer neural networks, IEEE Trans.
Neural Network. 13 (6) (2002) 1420–1431, https://doi.org/10.1109/
TNN.2002.804289.

[55] P. Isola, J.-Y. Zhu, T. Zhou, A.A. Efros, Image-to-image translation with conditional
adversarial networks, in: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2017, pp. 1125–1134. https://arxiv.org/abs/1611
.07004v3.

[56] B. Azhagusundari, A.S. Thanamani, Feature selection based on information gain,
Int. J. Innovative Technol. Explor. Eng. 2 (2) (2013) 18–21. https://www.oalib.
com/paper/2173542.

[57] S. Lloyd, Least squares quantization in pcm, IEEE Trans. Inf. Theor. 28 (2) (1982)
129–137, https://doi.org/10.1109/TIT.1982.1056489.

[58] S.C. Sripada, M.S. Rao, Comparison of purity and entropy of k-means clustering
and fuzzy c means clustering, Indian J. Computer Sci. Eng. 2 (3) (2011) 343–346.
ISSN 0976-5166.

[59] G. Baker, Le Corbusier-An Analysis of Form, Taylor & Francis, 2017. ISBN
9781351226240.

[60] R. Garber, Sinuous workflows: mad architects, the harbin opera house, Architect.
Des 87 (3) (2017) 128–135, https://doi.org/10.1002/ad.2183.

[61] K. Frampton, T. And‾o, S. Wrede, Tadao Ando. Museum of Modern Art, 1991. ISBN
0870701983.

[62] A. Iannacci, Gensler Architecture: Form + Strategy, Edizioni Pr, 1999. ISBN
9780966223033.

[63] B.I. Group, BIG Recent Project, TASCHEN (Evergreen), 2020. ISBN
9784871406789.

[64] K.B. Hiesinger, Z. Hadid, P. Schumacher, Zaha Hadid: Form in Motion,
Philadelphia Museum of Art, Philadelphia, PA, 2011, 2011. ISBN 9780300179828.

[65] C. Subbulakshmi, S. Deepa, Medical dataset classification: a machine learning
paradigm integrating particle swarm optimization with extreme learning machine
classifier, Sci. World J. 2015 (2015), https://doi.org/10.1155/2015/418060.

[66] Y. Guo, L. Zhang, Y. Hu, X. He, J. Gao, Ms-celeb-1m: a dataset and benchmark for
large-scale face recognition, in: European Conference on Computer Vision,
Springer, 2016, pp. 87–102, https://doi.org/10.1007/978-3-319-46487-9_6.

[67] W. Wu, X.-M. Fu, R. Tang, Y. Wang, Y.-H. Qi, L. Liu, Data driven interior plan
generation for residential buildings, ACM Trans. Graph. 38 (6) (2019) 1–12,
https://doi.org/10.1145/3355089.3356556.

[68] Z. Shi, J.A. Fonseca, A. Schlueter, A review of simulation based urban form
generation and optimization for energy-driven urban design, Build. Environ. 121
(2017) 119–129, https://doi.org/10.1016/J.BUILDENV.2017.05.006.

[69] K. Karimi, A configurational approach to analytical urban design:‘ space
syntax’methodology, Urban Des. Int. 17 (4) (2012) 297–318, https://doi.org/
10.1057/UDI.2012.19.

[70] J. Beirão, G. Mendes, J. Duarte, R. Stouffs, Implementing a generative urban design
model, in: eCAADe 2010 Conference: Future Cities, 2010, p. 265. http://papers.
cumincad.org/cgi-bin/works/Show?ecaade2010_084.

[71] J. Döllner, B. Hagedorn, Integrating urban gis, cad, and bim data by service based
virtual 3d city models, R. et al.(Ed.), in: Urban and Regional Data Management-
Annual, 2007, pp. 157–160, https://www.researchgate.net/publication
/313517089_Integrating_urban_GIS_CAD_and_BIM_data_by_service-based_virtual_
3D_city-models.

H. Zheng and P.F. Yuan

https://www.researchgate.net/publication/325117957_Drawing_with_Bots_Human-computer_Collaborative_Drawing_Experiments
https://www.researchgate.net/publication/325117957_Drawing_with_Bots_Human-computer_Collaborative_Drawing_Experiments
https://www.researchgate.net/publication/325117957_Drawing_with_Bots_Human-computer_Collaborative_Drawing_Experiments
https://doi.org/10.1007/978-981-33-4400-6_10
https://doi.org/10.1007/978-981-33-4400-6_10
http://papers.cumincad.org/data/works/att/acadia18_156.pdf
https://doi.org/10.5151/PROCEEDINGS-ECAADESIGRADI2019_605
https://doi.org/10.5151/PROCEEDINGS-ECAADESIGRADI2019_605
https://doi.org/10.5151/PROCEEDINGS-ECAADESIGRADI2019_605
https://doi.org/10.5151/PROCEEDINGS-ECAADESIGRADI2019_605
http://simaud.org/2020/proceedings/35.pdf
http://simaud.org/2020/proceedings/35.pdf
http://papers.cumincad.org/data/works/att/cf2019_003.pdf
http://papers.cumincad.org/data/works/att/cf2019_003.pdf
http://papers.cumincad.org/cgi-bin/works/paper/acadia18_146
http://papers.cumincad.org/cgi-bin/works/paper/acadia18_146
https://doi.org/10.1007/978-3-030-29829-6_20
https://doi.org/10.1007/978-3-030-29829-6_20
https://doi.org/10.5151/PROCEEDINGS-ECAADESIGRADI2019_605
https://doi.org/10.5151/PROCEEDINGS-ECAADESIGRADI2019_605
https://doi.org/10.1109/TPAMI.2012.59
https://proceedings.neurips.cc/paper/2016/file/44f683a84163b3523afe57c2e008bc8c-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/44f683a84163b3523afe57c2e008bc8c-Paper.pdf
http://papers.cumincad.org/cgi-bin/works/paper/ecaade2018_323
http://papers.cumincad.org/cgi-bin/works/paper/ecaade2018_323
https://doi.org/10.1016/J.CAGD.2018.03.024
http://papers.cumincad.org/cgi-bin/works/paper/caadria2020_015
http://papers.cumincad.org/cgi-bin/works/paper/caadria2020_054
http://papers.cumincad.org/cgi-bin/works/paper/caadria2020_054
https://doi.org/10.1109/CEEE.2017.8412925
https://doi.org/10.1109/CEEE.2017.8412925
https://arxiv.org/abs/1707.02392
https://arxiv.org/abs/1904.01083
https://arxiv.org/abs/1904.01083
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
http://orca.cf.ac.uk/131855/
http://orca.cf.ac.uk/131855/
http://www.rhino3d.com/
https://doi.org/10.30645/IJISTECH.V1I1.6
https://doi.org/10.30645/IJISTECH.V1I1.6
http://refhub.elsevier.com/S0360-1323(21)00579-5/sref50
http://refhub.elsevier.com/S0360-1323(21)00579-5/sref50
https://doi.org/10.4038/RJS.V1I0.71
https://doi.org/10.1002/AD.1569
http://www.ijettjournal.org/volume-3/issue-6/IJETT-V3I6P206.pdf
http://www.ijettjournal.org/volume-3/issue-6/IJETT-V3I6P206.pdf
https://doi.org/10.1109/TNN.2002.804289
https://doi.org/10.1109/TNN.2002.804289
https://arxiv.org/abs/1611.07004v3
https://arxiv.org/abs/1611.07004v3
https://www.oalib.com/paper/2173542
https://www.oalib.com/paper/2173542
https://doi.org/10.1109/TIT.1982.1056489
http://refhub.elsevier.com/S0360-1323(21)00579-5/sref58
http://refhub.elsevier.com/S0360-1323(21)00579-5/sref58
http://refhub.elsevier.com/S0360-1323(21)00579-5/sref58
http://refhub.elsevier.com/S0360-1323(21)00579-5/sref59
http://refhub.elsevier.com/S0360-1323(21)00579-5/sref59
https://doi.org/10.1002/ad.2183
http://refhub.elsevier.com/S0360-1323(21)00579-5/sref61
http://refhub.elsevier.com/S0360-1323(21)00579-5/sref61
http://refhub.elsevier.com/S0360-1323(21)00579-5/sref62
http://refhub.elsevier.com/S0360-1323(21)00579-5/sref62
http://refhub.elsevier.com/S0360-1323(21)00579-5/sref63
http://refhub.elsevier.com/S0360-1323(21)00579-5/sref63
http://refhub.elsevier.com/S0360-1323(21)00579-5/sref64
http://refhub.elsevier.com/S0360-1323(21)00579-5/sref64
https://doi.org/10.1155/2015/418060
https://doi.org/10.1007/978-3-319-46487-9_6
https://doi.org/10.1145/3355089.3356556
https://doi.org/10.1016/J.BUILDENV.2017.05.006
https://doi.org/10.1057/UDI.2012.19
https://doi.org/10.1057/UDI.2012.19
http://papers.cumincad.org/cgi-bin/works/Show?ecaade2010_084
http://papers.cumincad.org/cgi-bin/works/Show?ecaade2010_084
https://www.researchgate.net/publication/313517089_Integrating_urban_GIS_CAD_and_BIM_data_by_service-based_virtual_3D_city-models
https://www.researchgate.net/publication/313517089_Integrating_urban_GIS_CAD_and_BIM_data_by_service-based_virtual_3D_city-models
https://www.researchgate.net/publication/313517089_Integrating_urban_GIS_CAD_and_BIM_data_by_service-based_virtual_3D_city-models

	A generative architectural and urban design method through artificial neural networks
	1 Introduction
	1.1 Background
	1.2 Problem statement
	1.3 Objectives

	2 Methodology
	2.1 Data processing
	2.2 Neural network training
	2.3 Result evaluation
	2.4 Methods comparison

	3 Implementations
	3.1 Training with completion years
	3.2 Training with design styles

	4 Conclusion and discussion
	Declaration of competing interest
	Acknowledgment
	References

